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This paper uses classical beam theory to analyze the actuating capabilities of the embedded piezoelectric 
elements in beam structures. After considering the piezoelectric effect of piezoelectric material, the 
moment equation for finding the optimal thickness and depth of embedded piezoelectric actuators is set 
up. The optimal configurations of the embedded piezoelectric actuators can be then obtained by solving 
the equation. Two and three-dimensional contour maps and plots are also presented for different modulus 
ratios between the base material and piezoelectric material, which are used to show the best 
configurations for so-called smart beams with embedded piezoelectric actuators. The results are 
afterwards extended to the case of smart plates. It is shown that both of the thickness and the depth of 
embedded piezoelectric material as well as the modulus ratio (in the plate case, also the Poisson ratio) 
between the base material and piezoelectric material have great influence on the actuating capabilities of 
the embedded piezoelectric elements. 
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1  Introduction  

Piezoelectric material, such as sintered lead-
zirconium-titanate (PZT) ceramics and polyvinyl 
fluoride (PVDF) films, can be produced to work as both 
actuators and sensors, due to their properties of inverse 
piezoelectric effect and direct piezoelectric effect [1]. 
They have been used successfully for many years in the 
field of vibration control [2], but the early studies [3] 
are mostly focused on surface glued piezoelectric 
material, which exhibit some disadvantages, such as the 
difficulties to protect the ceramics and the connection 
wires, bad coupling with only one surface glued on the 
base material, etc. These disadvantages can be 
overcome by embedding the piezoelectric material 
inside the structures. Furthermore, the optimal positions, 
especially with respect to the depth [4] of the 
piezoelectric material, can be calculated for enhancing 
the actuation effect and sensor signal. As this paper 
shows, the thickness of the piezoelectric actuators plays 
also an important role when they are embedded. 

The moment equation of the piezoelectric actuator 
is firstly derived using classical beam theory following 
the strain and stress distribution analysis. Then, the 
optimal thickness and depth of the embedded 
piezoelectric actuator are obtained from this moment 
equation. In order to assure the piezoelectric material 
embedded inside the base structure, the conditions to 

achieve the optimal thickness and depth are also written 
out respectively. Two and three-dimensional contour 
maps and plots are also presented with different 
modulus ratios between the base material and 
piezoelectric material, which are used to show the best 
configurations for so-called smart beams with 
embedded piezoelectric actuators. And at last, the 
conclusions are also extended to the case of smart plates, 
in which the piezoelectric actuators are embedded. 

2  Strain and stress distribution in the smart beam 

Figure 1 shows the strain distribution induced by 
the moment in the smart beam structure, when the 
piezoelectric actuator intends to elongate with the 
external voltage. In Fig. 1, t and T are the half 
thicknesses of the piezoelectric material and of base 
structure, respectively, d is the distance between the 
neutral plane of the beam structure and the center plane 
of the piezoelectric material, and M shows the moment 
induced by the piezoelectric actuator. The axial force, 
which has always the same value for the same thickness, 
is omitted, because only the moment effect is discussed. 
The strain is continues and has linear relationship in the 
whole structure (see Fig. 1), with the assumption that 
the influence of the piezoelectric material to the neutral 
plane of the beam structure is neglectable. 
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Figure 1: Strain distribution in the smart beam 

The stress distribution in the base material remains 
consistent with the strain distribution, but the stress 
distribution in the piezoelectric material is however not 
the same as strain distribution due to the difference of 
the elastic moduli of the different material and the 
actuation function of the piezoelectric material. In the 
case mentioned above, the stress distribution is shown 
as Fig. 2. 

 

Figure 2: Stress distribution in the smart beam 

3  Moment generated by the piezoelectric actuator 

After the strain and stress distribution analyze, the 
strain of the base structure sε  and the strain of the 

piezoelectric actuator pε  can be written as 

 s p
yε ε
ρ

= = . (1) 

Here, y is the distance from the place, where the strain 
occurs, to the neutral plane of the beam structure, and 
ρ is the curvature radius of the beam structure when it 

bends. The stress of the base material sσ can then be 
shown as Eq.(2). Es is the elastic modulus of the base 
material. 
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And the stress in the piezoelectric material pσ , shown 
as Eq. (3), can be deduced from the piezoelectric effect, 
shown as Eq.(4) [5]. Where Ep is the elastic modulus of 
the piezoelectric material, d31 and E are the charge 
constant of the piezoelectric material and the driving 
electric field of the piezoelectric actuator, respectively. 
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The moment M that the piezoelectric actuator 

generated to drive the smart beam can then be derived 
with integration, shown as Eq.(5), for the stress from 
piezoelectric actuator, which has the inverse direction to 
Eq.(3). Where b is the width of the piezoelectric 
material. 
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And then, with the consideration that the curvature 
radius of the beam can be written as Eq.(6), and together 
with the inertia moment of the beam Iy, shown as Eq.(7), 
the moment M can be at last obtained as Eq.(8). Where 
B is the width of the beam. 
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4  Optimal thickness and depth of the piezoelectric 
actuators 

Based on Eq.(8), the relationship between the 
moment M and the distance d, which corresponds to the 
depth of the embedded piezoelectric material, and the 
relationship between the moment M and the half 
thickness of the piezoelectric material t can be presented 
as Fig. 3. It is shown in the Fig. 3 that the moment M 
increases at first with the increase of both d and t, and 
after reaching a maximum value, decreases with 
increasing d or t. This behaviour indicates that an 
optimal thickness and depth exist, at which point the 
moment M reaches a maximum value. Fig. 3 also 
implies the influence of the elastic moduli of the base 
material and of the piezoelectric material to the moment 
M as well as to the optimal values of d and t. 

Considering only the distance d, which corresponds 
to the depth of the embedded piezoelectric material, the 
maximum moment can be reached when 
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And when the following constrain inequality is 
satisfied, the optimal position of the piezoelectric 
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materials will be inside the beam. Otherwise, the 
optimal position of the piezoelectric materials will be 
outside the beam. 

 

Ep constant, Es increases Es constant, Ep increases

(a) Relationship between M and d 

 

Ep constant, Es increases Es constant, Ep increases

(b) Relationship between M and t 

Figure 3: Relationship between moment M and 
distance d respectively half thickness t 
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Where 
 /E s pr E E= , (11) 

 /Tr T t= , (12) 

 /Br B b= . (13) 
On the other hand, when only the half thickness of 

the piezoelectric materials t is taken into account, the 
optimal half thickness and the constrain inequality are 
shown as Eqs.(14) and (15), respectively. 

 
3

*
3

2
s

p

E BTt t
E b

= =  (14) 

 
2

E
B

r
r

≤  (15) 

Taking both of the distance d and the half thickness 
t into account at the same time results in the three-
dimensional plots, show on the left, and contour maps, 
show on the right, of the moment M presented in Fig.4, 
with the dimensionless coordinates 
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Under this situation, the optimal distance d* equals 
to the optimal thickness t*, which is shown as 
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And the constrain inequality (18) makes sure that 
the piezoelectric materials is embedded inside the beam, 
when both the distance d and thickness t get the optimal 
value shown in Eq.(17). 
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(a) Constraint is satisfied 

 

(b) Constraint is not satisfied 

Figure 4: Three-dimensional plots and contour maps 
of the moment M 

5  Conclusions 

Figures 3 and 4, as well as constrain inequalities 
(10), (15) and (18), tell us that the optimal result 
depends on rE, the ratios of the elastic moduli of the 
base material and of the piezoelectric material. With the 
increasing of rE, the optimal depth and thickness also 
increase. When both the depth and thickness achieve 
their optimal values and with the satisfaction of 
inequality (18), the position of the piezoelectric actuator 
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makes one surface of the piezoelectric material just lie 
on the neutral plane of the beam structure. This feature 
is shown in the contour maps with the optimal solutions 
are on the line of =ξ η . The optimal results can be 
obtained use Eq.(17). 

It is a critical quantity when 1/ 4E Br r= . The 
optimal thickness reaches the maximal value, half 
thickness of the beam structure, at this critical point. 
And the corresponding optimal depth is a quarter of 
thickness of the beam structure. With rE still increasing, 
the optimal solution keeps the same, which is shown in 
the contour map with the point (0.5, 0.5) when constrain 
not satisfied, that is 1/ 4E Br r≥  

When the inequality (18) is satisfied but the optimal 
thickness of piezoelectric material can not be satisfied 
due to other reasons, the optimal depth under this 
situation can also be obtained with only the depth in 
consideration, shown as Eq.(9), in which the thickness 
of the piezoelectric material plays also a role. It means 
that the optimal depths are different for the different 
thicknesses. On the other hand, Eq.(14) shows the 
solution with only the thickness is considered when the 
depth is however already fixed due to other factors. 
What should be pointed out is that the optimal thickness 
for certain rE is always the same value, no matter how 
deep the piezoelectric material is embedded. This can be 
proofed by both the contour maps, on which the optimal 
solutions form a vertical line in the constrained field, 
and Eq.(14), in which the depth is not included. This 
useful information can be obtained from the three-
dimensional plots and contour maps too. 

The above conclusions show us that the position, 
corresponding with the thickness and depth, of the 
embedded piezoelectric material, as well as the modulus 
ratios between the base material and piezoelectric 
material are very important for the smart beam 
structures when the piezoelectric element is used for 
actuation purpose. This paper aims to give some useful 
instructions for constructing smart composite material 
beams with piezoelectric elements embedded inside the 
structures to serve as actuators. 

6  Extension to the case of smart plates 

The above results are derived from beam structures 
with embedded piezoelectric material, and can not be 
used to the case of smart plates directly. The stress of 
the plate is shown as 
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Here, the thickness direction of the plate is defined as y 
axes. vs is the Poisson ratio of the base material, and xρ  

and zρ  are the curvature radii of the plate structure in x 
and z direction, respectively. With the suppose that the 
deformation in both x and z direction are symmetrical, 
which means 

 x zρ ρ= . (20) 
And when they are written as ρ , the stress is then 
expressed as 
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The stress in the piezoelectric material is accordingly 
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Here the subscript p refers to the corresponding 
parameters of the piezoelectric material. Comparing Eqs. 
(2) and (3) with Eqs. (21) and (22), it is obvious that by 
replacing the elastic moduli Es and Ep by Es / (1-vs) and 
Ep / (1-vp), respectively, all of the results can be applied 
to the case of plate structures with embedded 
piezoelectric actuators. The parameter (11) is now for 
the case of smart plate redefined as 
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