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Abstract.  Linear error models are an integral part of several parameter identification methods
for feedforward and feedback control systems and lead in connection with the L2-norm to a
convex distance measure which has to be minimised for identification purposes. The parame-
ters are hereby often subject to specific restrictions whose intersections span a convex solution
set with non-differentiability points on its boundary. For solving these well conditioned pro-
blems on-line the paper formulates the solution of the bounded convex minimisation problem
as a stable equilibrium set of a proper system of differential equations. The vector field of the
corresponding system of differential equations is based on a projection of the negative gra-
dient of the distance measure. A general drawback of this approach is the discontinuous right-
hand side of the differential equation caused by the projection transformation. The conse-
quence are difficulties for the verification of the existence, uniqueness and stability of a solu-
tion trajectory. Therefore the first subject of this paper is the derivation of an alternative for-
mulation of the projected dynamical system, which exhibits, in contrast to the original formu-
lation, a continuous right-hand side and thus is accessible to conventional analysis methods.
For this purpose the multi-dimensional stop operator is used and the existence, uniqueness and
stability properties of the solution trajectories are established. The second part of this paper
deals with the numerical integration of the projected dynamical system which is used for an
implementation of the identification method on a digital signal processor for example. To de-
monstrate the performance the application of this on-line identification method to the hystere-
tic filter synthesis with the modified Prandtl-Ishlinskii approach is presented in the last part of
this paper.

1. Introduction

In general the design of control systems bases on a more or less precise model of the control
plant. Frequently a model structure for the characteristic of the plant is given with fixed but
unknown model parameters. A central step for the design of feedforward or feedback control-
lers consists in the identification of the unknown parameters of the plant based on measure-
ments of the characteristic [4,7]. The starting point is the definition of an error signal e which
describes the deviation of the model characteristic from the measured characteristic in depen-
dence on the unknown model parameters w for every time t. The next step consists in the de-
rivation of a measure V  for the distance between the modeled and the measured data from the
error signal e by using a well suited cost functional. Proper error model parameters are then
determined by the minimisation of this distance measure V. An important task which consists
in obtaining a practically well-posed identification problem is to find an error model of the
form

( ) ( ) ( )Te t t tζ= + ⋅wΨΨΨΨ  (1)
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with linear dependence on the parameters. Here, ζ  and ΨΨΨΨ are a scalar and a vector time
function which contain the unparameterised characteristic of the plant. Starting from this error
model the square of the L2-norm leads to
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which is a quadratic distance measure for the identification of the error model parameters w
on the measurement time interval [0,tE]. By construction, the matrix H given by

2

0

( ( ) ) 0   
Et

T T nt dt⋅ ⋅ = ⋅ ≥ ∀ ∈ℜ∫w H w w wΨΨΨΨ , (3)

is always symmetric and positive-semidefinite. From this follows the convexity of the distance
measure F(w). In many cases the parameter set consists only of a convex subset Z of ℜn which
can for instance be given in terms of a concave function u as

{ }  ( ) 0 nZ u= ∈ℜ ≥w w . (4)

A typical example for such an identification problem is the compensator design for memory-
less and hysteretic nonlinearities with the so-called Prandtl-Ishlinskii approach. In this ap-
proach the conditions for the invertibility of the corresponding nonlinearities are then formu-
lated as linear inequality constraints for the error model parameters [7], and the convex subset
Z is therefore a convex polyhedron which results from the intersection of convex halfspaces
defined by linear inequality contraints. In this case the optimisation problem to solve is given
by

min{ ( )}
Z

F
∈w

w . (5)

Because of the convexity of the distance measure V and the parameter set Z the bounded op-
timisation problem (5) is convex itself and thus the set of global minima is convex, too [9].
For solving these well conditioned problems before putting the control system into operation
the optimisation theory provides multiple powerful algorithms. But these algorithms are not
suitable for an optimisation during the operation of the control system, because they require
too much computing power. A possibility to avoid these difficulties is to formulate the soluti-
on of the bounded quadratic optimisation problem as a stable equilibrium point of a proper
system of differential equations. This dynamical system can then be solved through numerical
integration very efficiently from time step to time step during the operation of the control sy-
stem. In the unconstrained case, for instance, the right-hand side of the differential equation is
given by the negative gradient of the quadratic target function. The theory of the projected
dynamical systems [8] offers a starting point for the formulation of a respective differential
equation if the convex constraint Z is present. Then the vector field of the differential equation
is also based on the negative gradient of the quadratic target function. However, the right-hand
side of the differential equation is obtained in this case from a projection of the negative gra-
dient which ensures that the trajectory of the system under no circumstances leaves the ad-
missible solution set. In contrast to parameter projection methods normally used the in the
field of adaptive systems, the applied projection transformation considers also the non-
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differentiability points of the boundaries of the convex solution set. As in the case of a convex
polyhedron these non-differentiability points often result from the intersection of smooth con-
vex sets. The projection transformation leads to a discontinuous right-hand side of the diffe-
rential equation. The consequence are difficulties for the verification of the existence, unique-
ness and stability of a solution trajectory. The main subject of this paper is the derivation of an
alternative formulation of the projected dynamical system, which exhibits, in contrast to the
original formulation, a continuous right-hand side and thus is accessible to conventional ana-
lysis methods. For this purpose the multi-dimensional stop operator, well-known from the
hysteretic systems theory, is used [5,6]. Finally the existence and uniqueness of the solution
trajectories are verified and the stability properties of the projected dynamical system are inve-
stigated.

2. Geometry of convex sets

We consider the vector space X = ℜn for some n ∈ ℵ, endowed with a scalar product 〈⋅,⋅〉 and
with norm

1 2
,=x x x (6)

for x ∈ X, and a fixed closed convex set Z ⊂ X. For x ∈ Z we define the outward normal cone
N(x) and the tangential cone T(x) by the formula

{ }( ) | , 0   N X Z= ∈ − ≥ ∀ ∈x y y x z z (7)

and

{ }( ) | , 0   ( )T X N= ∈ ≤ ∀ ∈x v y v y x . (8)

We will see in the sequel that it is appropriate here to consider a general abstract scalar pro-
duct in X rather than just the canonical one

 
1

,
n

T
i i

i

x y
=

= ⋅ =∑I
x y x y . (9)

A suitable choice of the scalar product will enable us in section 5 and 6 to simplify consider-
ably the numerical computations. A geometrical interpretation of the normal cone and the tan-
gential cone is given in Fig. 1. Note that we have

( )   ,T Z− ∈ ∀ ∈z x x x z .   (10)

We denote by Q the orthogonal projection of X onto Z, that is,

( ) arg min{ }
Z∈

= −
z

Q r r z   (11)

for r ∈ X. We also make systematic use of the dual mapping P(r) = r − Q(r). In particular (11)
can be equivalently written as a variational inequality

( ) ,    ( ), ( ) 0      Z X Z∈ − ≥ ∀ ∈ ∀ ∈Q r P r Q r z r z .   (12)

Indeed, this follows from the elementary identity

2 2 22((1 ) ( ) ) ( ) ( ) 2 ( ), ( )α α α α− − + = − + − + −r Q r z r Q r Q r z P r Q r z   (13)
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for all α ∈ [0,1], r ∈ X, and z ∈ Z. Assuming that (12) holds, we obtain from (13) for α  = 1
that ||r − z||2 ≥ ||r − Q(r)||2 for all z ∈ Z, hence (11) is verified. Conversely, if (11) holds, then
||r − ((1 − α)Q(r) + αz)|| ≥ ||r − Q(r)|| and from (13) it follows that α||Q(r) − z||2 + 2〈P(r),Q(r) −
 z〉 ≥ 0 for all α ∈ ]0,1]. Letting α tend to 0+ we obtain (12).

Z

x + T(x)

x + N(x)

q
r

Q(r) QT(x)(q)

x + q − QT(x)(q)

x

P(r)

PT(x)(q)

Figure 1: Schematic representation of the geometry of convex sets with arbitrary points x ∈
Z, r ∈ Z, q = r − x.

The tangential cone T(x) is obviously a convex closed set, we thus can define in the same way
the projection QT(x) of X onto T(x) for x ∈ Z analogously to (11) as

( )
( )

( ) arg min{ }
∈

= −T
T

x
y x

Q q q y   (14)

for q = (r − x) ∈ X. The relationship between Q and QT(x) will be characterized in the follo-
wing two Lemmas.

Lemma 2.1 Let x ∈ Z and q, v ∈ X be given. Then

( ) ( ) ( ) ,  , 0 ,  ( )T T= ⇔ ∈ − = = + −xv Q q v x q v v x Q x q v .   (15)

Proof. Assume first that v = QT(x)(q). The variational formulation analogous to (12) reads

, 0   ( )T− − ≥ ∀ ∈q v v s s x .   (16)

As T(x) is a cone, we can choose consecutively s = o and s = 2v ∈ T(x) and obtain 〈q − v,v〉 =
0 and

, 0   ( )T− − ≥ ∀ ∈q v s s x .   (17)

By (10) we can put s = z − x for an arbitrary z ∈ Z, hence

, 0   Z− − ≥ ∀ ∈q v x z z   (18)

which is equivalent to x = Q(x + q − v) according to (12). Conversely, if the right-hand side of
(15) is satisfied and if s ∈ T(x) is arbitrary, then

, ( ) 0   0δ δ− − + ≥ ∀ >q v x Q x s ,   (19)

or equivalently



5

1
, ( ) 0   0δ δ
δ

〈 − + − 〉 ≥ ∀ >q v P x s s .   (20)

The assertion will immediately follow provided we check that

0

1
lim ( ) 0      ( )Z T
δ

δ
δ→ +

+ = ∀ ∈ ∀ ∈P x s x s x .   (21)

To prove this conjecture, we use (12) for q = x + δs and obtain

( ), ( ) 0      0Zδ δ δ+ + − ≥ ∀ ∈ ∀ >P x s Q x s z z .   (22)

For z = x this yields in particular

( ), ( ) 0   0δ δ δ δ+ − + ≥ ∀ >P x s s P x s ,   (23)

hence ||P(x +δs)|| ≤ δ ||s||. The system {P(x +δs)/δ ; δ  > 0} is bounded, we can therefore ex-
tract a sequence δn → 0+ and an element y ∈ X such that

1
lim ( )n
n

n

δ
δ→∞

+ =P x s y .   (24)

Dividing (22) for δ  = δn by δn and letting n tend to ∞ we obtain

, 0   Z− ≥ ∀ ∈y x z z ,   (25)

hence y belongs to the normal cone N(x). We further divide (23) for δ  = δn by δn
2 and pass to

the limit. This yields

, 0− ≥y s y .   (26)

By definition of N(x) and T(x) we have 〈y,s〉 ≤ 0, hence y = o independently of the sequence
{δn}, and the proof is complete.   

Lemma 2.2 For every q ∈ X and x ∈ Z we have

( )
0

1
( ) lim ( ( ) )T δ

δ
δ→ +

= + −xQ q Q x q x .

Proof. Let q ∈ X and x ∈ Z be given. Similarly as in (22) we have

( ), ( ) ( ), ( ) 0   0δ δ δ δ δ δ+ + − = + − + + − ≥ ∀ >P x q Q x q x x q Q x q Q x q x ,   (27)

hence ||Q(x +δq) − x || ≤ δ ||q|| for every δ > 0. There exists again a sequence δn → 0 and an
element v ∈ X such that

1
lim ( ( ) )n
n

n

δ
δ→∞

+ − =Q x q x v .   (28)

For every y ∈ N(x) and δ > 0 we have by definition of N(x) that 〈y,x − Q(x +δq)〉 ≥ 0. Dividing
this inequality by δ  = δn by δn and passing to the limit we obtain that 〈y,v〉 ≤ 0 for every y ∈
N(x), hence v ∈ T(x). To check that v = QT(x)(q), we choose an arbitrary s ∈ T(x) and compute
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where

2

1
( ), ( ) ( ) 0n n n n

n

A δ δ δ
δ

= + + − + ≥P x q Q x q Q x s ,

2

1
( ), ( )n n n

n

B δ δ
δ

= + +P x q P x s

with limn→∞Bn = 0 by virtue of (21) and (28). Passing to the limit in (29) we obtain (16), hence
v = QT(x)(q). The independence of the limit in (27) from the choice of δn completes the proof.

Let us consider now a convex continuously differentiable function F: X → ℜ, and let F’: X →
X denote its gradient, that is,

0

1
( ), lim ( ( ) ( ))F F

δ
δ

δ→ +
′ = + −F x q x q x  for x, q ∈ X.   (30)

Let

{ | ( ) ( )  }K Z F F Z= ∈ ≤ ∀ ∈v v z z   (31)

denote the set (possibly empty if Z is unbounded and F is unbounded from below) where F
attains its minimum on the set Z. For v0,v1 ∈ K we have indeed F(v0) = F(v1) =: Fmin, and for α
∈ [0,1] it follows that

min 1 0 1 0 min( (1 ) ) ( ) (1 ) ( )F F F F Fα α α α≤ + − ≤ + − =v v v v ,   (32)

hence K is convex. We conclude this section with the following easy and classical result.

Lemma 2.3 Let F, K be as above, and set

ˆ { | ( ), 0  }K Z Z′= ∈ − ≥ ∀ ∈v F v z v z ,

( ){ | ( ( ))}TK Z∞ ′= ∈ = −vv o Q F v .

Then ˆK K K∞ = = .

Proof. For v ∈ K and z ∈ Z we have (F(v +δ(z − v)) − F(v))/δ  ≥ 0, and letting δ tend to 0+ we

obtain 〈F’(v),z − v〉  ≥ 0, hence ˆK K⊂ . To prove the inclusion K̂ K⊂ , we first notice that the
convexity of F yields

( ( )) ( ) ( ( ) ( ))   ,    [0,1]F F F F Zδ δ δ+ − − ≤ − ∀ ∈ ∀ ∈v z v v z v z v .   (33)

For δ → 0+ this implies that

( ), ( ) ( )   ,F F Z′ − ≤ − ∀ ∈F v z v z v z v .   (34)
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For all v ∈ K̂  we thus have F(z) − F(v) ≥ 0 for all z ∈ Z, hence v ∈ K. The identity ˆK K∞ = is

straightforward. By Lemma 2.1 we have

( ) ( ( )) ( ( ))T
′ ′= − ⇔ = −vo Q F v v Q v F v

which is by virtue of (12) in turn equivalent to the variational inequality

( ), 0  Z′− − ≥ ∀ ∈F v v z z

and Lemma 2.3 is proved.   

3. Dynamical systems and the stop operator

The main part of this section is devoted to the projected dynamical system

( ( )) 0( ) ( ( ( )))   ,   (0)T tt t Z′= − = ∈ww Q F w w w ,   (35)

where F is a convex function as at the end of the previous section and where the dot denotes
the derivatives with respect to t. The equilibrium point or stationary point of the projected
dynamical system (35) is defined as the vector w∞ which fullfils the equation

( ) ( ( ))T ∞ ∞′= −wo Q F w .   (36)

The equivalence between the set K∞ of the equilibrium points of the projected dynamical sy-
stem (35) and the set of set of global minima K of the convex function F is established in
Lemma 2.3. This result permits the minimization of F(w) with w ∈ Z by solving the projected
dynamical system (35) provided that a solution trajectory of the projected dynamical system
(35) exists, is unique and converges asymptotically to the convex set K∞ of equilibrium points.
But the projection transformation QT(w) introduces a discontinuity into the  right-hand side of
the differential equation (35) and the problem becomes difficult. Instead of trying to extend to
our case the complicated methods which are described in [8], we transform the equation (35)
into an operator-differential equation with a Lipschitz-continuous right-hand side. For this
purpose we work with the space AC(ℜ+;X) of absolutely continuous functions q : ℜ+ → X,
where ℜ+ denotes the interval [0,∞[. Keeping still fixed the convex closed set Z ⊂ X from the
previous section, we refer to [3,5,6] to recall that for every q ∈ AC(ℜ+;X) and every initial
condition w0 ∈ Z there exists a unique solution w ∈ AC(ℜ+;X) to the variational inequality

0( )    0  ,  (0)   ,  ( ) ( ), ( ) 0  a.e.  ∈ ∀ ≥ = − − ≥ ∀ ∈t Z t t t t Zw w w q w w z z .   (37)

The solution operator

0: ( ; ) ( ; ) : ( , )Z AC X AC X+ +× ℜ → ℜ →S w q w   (38)

is called the stop and its analytical properties have been systematically studied e.g. in Chapter
2 of [3]. We will need the following result which in principle goes back to [5].

Lemma 3.1 Let q,w ∈ AC(ℜ+;X) be given, w(t) ∈ Z for all t ≥ 0, and let S : Z × AC(ℜ+;X)
→ AC(ℜ+;X) be the stop. The following two conditions are equivalent.

(i) ( ( ))( ) ( ( ))  a.e.T tt t= ww Q q

(ii) [ (0), ]=w S w q .
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Proof. We use the equivalence statement in Lemma 1.1. If (i) holds for some t > 0, then (18)
reads

( ) ( ), ( ) 0   t t t Z− − ≥ ∀ ∈q w w z z ,   (39)

hence (ii) is fulfilled. Conversely, if (39) holds for some t > 0, then putting alternatively z =
w(t+h), z = w(t−h) for h ∈ ]0, t[, dividing (39) by h, and letting h tend to 0+ we obtain

( ) ( ), ( ) 0t t t− =q w w .   (40)

Moreover, for y ∈ N(w(t)) we have

, ( ) 0   t Z− ≥ ∀ ∈y w z z ,   (41)

and arguing similarly as above we obtain

, ( ) 0t =y w ,   (42)

hence ( ) ( ( ))t T t∈w w . From Lemma 2.1 and (39) - (42) we conclude that (i) holds.   

Assume that (35) admits a solution w ∈ AC(ℜ+;X) such that w(t) ∈ Z for all t ≥ 0. For t ≥ 0 we
define an auxiliary fuction q ∈ AC(ℜ+;X) by the formula

0

( ) ( ( ))d
t

t s s′= −∫q F w .   (43)

From Lemma 3.1 it follows that w = S[w0,q], and differentiating (43) we obtain the system

0

( )   ( ) ( ( )) ,

( )  [ , ],

( ) (0) .

i t t

ii

iii

′+ =
=
=

q F w o

w S w q

q o

  (44)

By virtue of Lemma 3.1, problems (35) and (44) are equivalent. We will see that indepen-
dently of the choice of Z, the stop S[w0,⋅] is for every T > 0 a Lipschitz continuous mapping
from the restriction AC([0,T];X) of AC(ℜ+;X) onto the interval [0,T] into the space C([0,T];X)
of continuous functions on [0,T]. In order to simplify the presentation, we moreover assume
that F’ : X → X is Lipschitz continuous. This enables us to treat the discontinuous problem
(35) by the standard technique of continuous dynamical systems and construct the solution in
a standard way by successive approximations.

Proposition 3.2 Let Z ⊂ X be an arbitrary non-empty convex closed set and let F : U → ℜ
be a convex continuously differentiable function defined in a convex open set U ⊂ X such that
Z ⊂ U. Assume furthermore that F’: X → X is Lipschitz continuous. Then the system (44) ad-
mits a unique solution (q,w) ∈ AC(ℜ+;X) × AC(ℜ+;X) such that dq/dt is continuous and dw/dt
∈ ( ; )locL X∞

+ℜ

Proof.  We fix some final time T > 0, and for t ∈ [0,T] and n ∈ ℵ define recursively the se-
quences

 (0) ( 1) ( 1) ( ) ( 1)
0

0

( ) ,    ( ) [ , ]( ),    ( ) ( ( ))d .
t

n n n nt t t t τ τ− − −′= = = −∫q o w S w q q F w   (45)
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From (37) it follows that

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ), ( ) ( ) 0  a.e.  , {0}n n m m n mt t t t t t n m− − + − ≥ ∀ ∈ℵ∪q w q w w w ,   (46)

hence
2( ) ( ) ( ) ( ) ( ) ( )1 d

( ) ( ) ( ) ( ) ( ) ( )   a.e.  , {0}
2 d

n m n m n mt t t t t t n m
t

− ≤ − − ∀ ∈ℵ∪w w q q w w or

simply

( ) ( ) ( ) ( )d
( ) ( ) ( ) ( )   a.e.  , {0}

d
n m n mt t t t n m

t
− ≤ − ∀ ∈ℵ∪w w q q   (47)

Integrating (47) yields

( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( ) d    [0, ]   , {0}
t

n m n mt t t T n mτ τ τ− ≤ − ∀ ∈ ∀ ∈ℵ∪∫w w q q .   (48)

Let L > 0 be the Lipschitz constant of F’, that is,

( ) ( )    ,L U′ ′− ≤ − ∀ ∈F x F y x y x y

By (45) and (48) we have for every n ∈ ℵ and t ∈ [0,T] that

( 1) ( ) ( ) ( 1) ( ) ( 1)

0

( ) ( ) ( ) ( ) ( ) ( ) d
t

n n n n n nt t L t t L τ τ τ+ − −− ≤ − ≤ −∫q q w w q q .   (49)

By induction over n we obtain

1
( ) ( 1)

0

0

( ) ( ) d ( )
!

t n n
n n L t

n
τ τ τ

−
− ′− ≤∫ q q F w .   (50)

The series 
1

!1

n nL t
nn

−∞

=∑ is convergent, hence {q(n)} is a fundamental sequence in AC([0,T];X). Let

q ∈ AC([0,T];X) denote its limit. Put 0[ , ]=w S w q . Repeating the argument of (48) we obtain

( ) ( )

0

( ) ( ) ( ) ( ) d    [0, ]   
t

n nt t t T nτ τ τ− ≤ − ∀ ∈ ∀ ∈ℵ∫w w q q ,   (51)

hence w(n) converge uniformly to w. Passing to the limit in (45) as n → ∞ we check that (q,w)
∈ AC([0,T];X) × AC([0,T];X) is a solution to (44), hence in particular dq/dt is continuous.
From (40) it follows that ||dw/dt|| ≤ ||dq/dt|| a.e., hence dw/dt ∈ L∞([0,T];X). The uniqueness is
easy: for two solutions (qi,wi), i = 1,2, we have

1 2 1 2 1 2 1 2, ( ) ( ), 0  a.e.′ ′− − + − − =q q w w F w F w w w ,

where 
2d1

1 2 1 2 1 22 d, t− − ≥ −q q w w w w  a.e., 1 2 1 2( ) ( ), 0′ ′− − ≥F w F w w w , hence w1 = w2,

q1 = q2. We thus proved the existence of a unique solution to (44) on each interval [0,T]. The
solution thus can be extended to ℜ+ and the proof is complete.   

The main result of this section reads as follows.

Proposition 3.3 Assume that the set K is non-empty, and let q, w ∈ AC(ℜ+;X) satisfy (44).
Then there exists w∞ ∈ K such that
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(i) lim ( )
t

t ∞→∞
=w w .

(ii) There exists a nonincreasing function p : ℜ+→ ℜ+  such that ||dw(t)/dt|| = p(t) a.e. and

lim ( ) 0
t

t p t
→∞

= .

(iii) F(w(t)) ≤ F(w(s)) for all t > s ≥ 0, and 
2

00
( ) d ( ) ( )t t F F

∞

∞= −∫ w w w .   

Proof. For t > 0 and h > 0 the solution satisfies the identity

( ) ( ) ( ( )) ( ( ))t h t t h t′ ′+ − + + − =q q F w F w o .   (52)

We take the scalar product of its left-hand side with w(t+h)  w(t). From (37) it follows that

( ) ( ), ( ) ( ) 0   a.e.t h t h t h t+ − + + − ≥q w w w ,

( ) ( ), ( ) ( ) 0   a.e.t t t t h− − + ≥q w w w ,

hence

( ) ( ), ( ) ( ) ( ) ( ), ( ) ( )t h t t h t t h t t h t+ − + − ≥ + − + −q q w w w w w w .

The convexity of F implies that F’ is monotone, that is,

( ( )) ( ( )), ( ) ( ) 0t h t t h t′ ′+ − + − ≥F w F w w w .

The above considerations lead to the inequality

2d
( ) ( ) 0   . . 0

d
t h t a e h

t
+ − ≤ ∀ >w w ,   (53)

hence

( ) ( ) ( ) ( )    0   0t h t s h s t s h+ − ≤ + − ∀ > ≥ ∀ >w w w w .   (54)

Letting h tend to 0+ we obtain

( ) ( )t s≤w w for all Lebesgue points t > s > 0 of w .   (55)

We now put p(t) = sup ess{||dw(r)/dr||; r ∈ ]t,∞[}. Then p is nonincreasing, and the comple-
ment of the set A of all t > 0 which are Lebesgue points of dw/dt and continuity points of p is
of measure zero. For all r, t ∈ A, r > t > 0, we have ||dw(r)/dr|| ≤ ||dw(t)/dt||, hence p(t) ≤
||dw(t)/dt||. On the other hand, for t ∈ A and ε > 0 there exists δ > 0 such that ||dw(t)/dt|| ≤ p(s)
≤ p(t) + ε for s ∈ ]t − δ, t[. Letting ε tend to 0+ we obtain ||dw(t)/dt|| = p(t) for all t ∈ A. We
further take the scalar product of (44) (i) with dw(t)/dt. Then (40) yields

2 d
( ) ( ( )) 0   . .

d
t F t a e

t
+ =w w   (56)

hence
*

2

0

0

( ) d ( ( *)) ( ) 0   * 0
t

t t F t F t+ − = ∀ >∫ w w w ,   (57)

which for t*→ ∞ yields
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2
0 min

0

( ) d ( )p t t F F
∞

≤ −∫ w .   (58)

Assume that there exists c > 0 and a sequence 0 < t1 < t2 < . . such that limn→∞ tn = ∞ and p(tn)
≥ ctn

-1/2 for all n ∈ ℵ. Then

1

2 2 2

1 1 10

( ) d ( ) d (1 )
n

n

t

n

n n nt

t
p t t p t t c

t

+∞ ∞ ∞

= = +

≥ ≥ −∑ ∑∫ ∫ .

Set an = 1 − tn/tn+1 for n ∈ ℵ. Then log(tn+1) = log(tn) − log(1 − an), hence

1 1

log(1 )
log(1 ) max{ ; }n

n n
n nn

a
a n a

a

∞ ∞

= =

−+∞ = − − ≤ ∈ℵ < +∞
−∑ ∑   (59)

which is a contradiction, hence (ii) is verified. The next estimate consists in choosing an ar-
bitrary v ∈ K, and taking the scalar product of (44)(i) with w(t) − v. Then

( ), ( ) ( ( )), ( ) 0t t t t′− + − =q w v F w w v .   (60)

We have ( ), ( ) ( ), ( )t t t t− ≥ −q w v w w v by (37) and ( ( )), ( ) ( ( )) ( )t t F t F′ − ≥ −F w w v w v by

(34), and from (60) it follows that

( ), ( ) ( ( )) ( ) 0t t F t F− + − ≤w w v w v   (61)

that is

 
21 d

( ) ( ( )) ( ) 0
2 d

t F t F
t

− + − ≤w v w v .   (62)

We have in particular that

( ) ( )    0t s t s− ≤ − ∀ > ≥w v w v .   (63)

We find a sequence tn → ∞ and an element w∞ ∈ Z such that

 ( ) 0,    ( )    as  n nt t n∞→ → →∞w w w .   (64)

Inequality (61) for t = tn and n → ∞ yields that F(w∞) ≤ F(v) = Fmin, hence w∞ ∈ K. This en-
ables us to finish the proof. Choosing v = w∞ in (63) we see that the whole trajectory of w
converges to w∞, hence (i) holds,while (iii) follows from (56) and (57) for t* → ∞.        

In the following we restrict ourselves to the quadratic distance measure (2) with a symmetric
matrix H which results from a linear error-model (1) and which fulfils the condition

2

0

( ( ) ) d 0   \ { }
Et

T T nt t⋅ ⋅ = ⋅ > ∀ ∈ℜ∫w H w w w oΨΨΨΨ .   (65)

In this case H is positive-definite and the distance measure F according to (2) is strictly con-
vex. It is a well-known result from the optimization theory that a strictly convex function
subject to convex contraints has only one global minimum in Z [9]. Therefore according to
Lemma 2.3 the set K∞ consists of one single point w∞, which is according to Proposition 3.3 a
globally asymtotically stable equilibrium point of the corresponding projected dynamical sy-
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stem (44). If we choose the canonical scalar product according to (9) for the general scalar
product an expression for F′(x) is given by (30), that is,

( ), ,′ = ⋅ +
I I

F x q H x g q ,   (66)

hence

( )    ′ = ⋅ + ∀ ∈F x H x g x X .   (67)

In this case system (44) can therefore be written in the form

0

( )   ( ) ( ) ,

( )  [ , ],

( ) (0) .

i t t

ii

iii

= − ⋅ −
=
=

q H w g

w S w q

q o

  (68)

Due to the special structure of the gradient in (67) the stability results (i) and (ii) from Propo-
sition 3.3 can be formulated in a stronger way by

Proposition 3.4. Assume that the set K is non-empty, and let q, w ∈ AC(ℜ+;X) satisfy (44)
with a quadratic distance measure F according to (2) which fulfils the condition (65). Then

min ( )
02 2

( ) e tt λ−
∞ ∞− ≤ −Hw w w w

holds with λmin(H) > 0 as the smallest eigenvalue of H.

Proof. The starting point of our considerations is the defining variational inequality (37) of the
stop. According to (37) it holds for any w1(t) = S[w10,q1](t) ∈ Z und w2(t) = S[w20,q2](t) ∈ Z

1 1 1 2 2 2 2 10 ( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))T Tt t t t t t t t≤ − ⋅ − + − ⋅ −q w w w q w w w .   (69)

A reorganization of the right-hand side yields to

1 2 1 2 1 20 ( ( ) ( ) ( ( ) ( ))) ( ( ) ( ))Tt t t t t t≤ − − − ⋅ −q q w w w w   (70)

and from this follows the inequality

1 2 1 2 1 2 1 2( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))T Tt t t t t t t t− ⋅ − ≤ − ⋅ −w w w w q q w w .   (71)

Due to

2

1 2 1 2 1 2

1 d
( ) ( ) ( ( ) ( )) ( ( ) ( ))

2 d
Tt t t t t t

t
− = − ⋅ −w w w w w w   (72)

(71) leads to

2

1 2 1 2 1 2

1 d
( ) ( ) ( ( ) ( )) ( ( ) ( ))

2 d
Tt t t t t t

t
− ≤ − ⋅ −w w q q w w .   (73)

Assume now that both (w1,q1) and (w2,q2) are solutions of (68) with respective initial states
w10, w20. From (73) and (68)(i) it follows that

2

1 2 1 2 1 2

1 d
( ) ( ) ( ( ) ( )) ( ( ) ( ))

2 d
Tt t t t t t

t
− ≤ − − ⋅ ⋅ −w w w w H w w .   (74)

Due to
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1 2 1 2 min 1 2 1 2

2

min 1 2

( ( ) ( )) ( ( ) ( )) ( )( ( ) ( )) ( ( ) ( ))

( ) ( ) ( )

T Tt t t t t t t t

t t

λ

λ

− ⋅ ⋅ − ≥ − ⋅ −

= −

w w H w w H w w w w

H w w
  (75)

the right-hand side of (74) can be estimated by

2 2

1 2 min 1 2

d
( ) ( ) 2 ( ) ( ) ( )

d
t t t t

t
λ− ≤ − −w w H w w .   (76)

Let now (w,q) be an arbitrary solution of (68) and let w∞ be the equilibrium point. From (37)
and Lemma 2.3 it follows that w2(t) = w∞, q2(t) = −t(H⋅ w∞ + g) satisfies (68) with w20 = w∞.
Using (76) with (w1,q1) = (w,q) we obtain the inequality

2 2

min

d
( ) 2 ( ) ( )

d
t t

t
λ∞ ∞− ≤ − −w w H w w   (77)

and the time evolution of the Euclidean distance between the equilibrium point w∞ and w(t)
can be estimated by

min ( )
0( ) e tt λ−

∞ ∞− ≤ −Hw w w w   (78)

and the proof is complete.   

Remark

In practical applications (and we will see a typical situation in Section 5), orthogonal projecti-
ons in usual sense applied to an arbitrary convex constraint may lead to technical difficulties.
Our method, however, works independently of the orthogonality concept induced by a con-
crete scalar product. It may therefore be useful to choose the scalar product so as to fit with
the geometry of the convex set Z. To be more specific, consider a non-singular matrix U ∈
ℜn×n (that is det U ≠ 0), and the scalar product

, , T T= ⋅ ⋅ = ⋅ ⋅ ⋅
U I

x y U x U y x U U y ,   (79)

and let us derive an explicit form of (44) in this situation. An expression for F’(x) is given by
(30), that is,

( ), ,′ = ⋅ +
U I

F x q H x g q ,   (80)

hence
1 1( ) ( )   T− −′ = ⋅ ⋅ ⋅ + ∀ ∈F x U U H x g x X .   (81)

The right-hand side of (80) follows directly from the definition of the scalar function F in (2)
and the limit process in (30), whereas the left-hand side of (80) depends on the concrete scalar
product which is chosen in this case according to (79). System (44) can therefore be written in
the form

 

1

0

( )   ( ) ( ( ) ) ,

( )  ( ) ( ), ( ) 0   a.e.   ,

( ) (0) ,       (0) ,

Ti t t

ii t t t Z

iii

−⋅ + ⋅ ⋅ + =
⋅ − ⋅ ⋅ − ⋅ ≥ ∀ ∈

= =
I

U q U H w g o

U q U w U w U z z

q o w w

  (82)

or, introducting new quantities w* = U⋅w, q* = U⋅q, Z* = U(Z), g* = U -1T⋅g, H* = U -1T⋅H⋅U -1,
we obtain the system
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0

( )   * ( ) * *( ) *,

( )  ( *( ) *( )) ( *( ) *) 0   a.e.   * *,

( ) * (0) ,       * (0) ,

T

i t t

ii t t t Z

iii

= − ⋅ −

− ⋅ − ≥ ∀ ∈
= = ⋅

q H w g

q w w z z

q o w U w

  (83)

which corresponds to the form of (68). Therefore Proposition 3.4 and the results of Section 4
for the system (68) hold also for the transformed system (83). This and the time-discrete sy-
stem (86) below in Section 4 suggest a hint how to choose the matrix U in (79). It corresponds
to an optimal deformation Z → Z* = U(Z) of the convex set Z which ensures the simplest pos-
sible numerical evaluation of the orthogonal projection Q* onto Z*.

4. Numerical Integration

The starting point for the formulation of a well suited numerical integration procedure for the
projected dynamical system (68) on a sampling data system with a constant sampling time Ts

is the alternative formulation (35). Applying Lemma 2.2. to the right-hand side of (35) and
replacing the left-hand side of (35) by the definition of dw(t)/dt leads to

0 0

( ) ( ) 1
lim lim ( ( ( ) ( ( ))( ) ))

t t
t tt

δ δ

δ δ
δ δ→+ →+

+ − = − −⋅ +w w
Q w wH w g .   (84)

From this follows for a finite length of the stepsize δ  the expression

0 0( )( ) ( ( ) ( )   ,   () )tt t t Zδ δ+ = − ∈+ =⋅H w gw Q w w w .   (85)

If we assume a constant integration stepsize δ  which corresponds to the sampling time Ts the
continuous time t and t +δ  in (85) can be replaced by the discrete time kTs and (k + 1)Ts. Ne-
glecting the sampling time Ts in the arguments of w leads to the vector difference equation

0( 1) ( ( ) ( )   ,   (0)( ) )sk k T k Z+ = − = ∈⋅ +w Q w g w wH w   (86)

as a time-discrete approximation of (68). From the practical point of view we are searching for
the maximum value of Ts for which the discrete-time series w(k), k ≥ 0 has a unique fixed
point w* which corresponds to the unique equilibrium point w∞ of (68).

Proposition 4.1 Let Z, Q, H, and w∞ be as above, and let Ts > 0 be chosen such that

max

2

( )sT
λ

<
H

,   (87)

where λmax(H) > 0 is the largest eigenvalue of H. Let w(k) ∈ Z be the sequence defined by
(86). Then w(k) converges to w∞ as k → ∞, and w∞ is the unique fixed point of the difference
equation (86). Moreover, assuming

max min

2

( ) ( )sT
λ λ

≤
+H H

,   (88)

we estimate the number N of necessary integration steps for any given accuracy bound 0 < εw

< 1 by the implication

min 0

( )ln( )
    

( )s

N
N

T

ε ε
λ

∞

∞

−
≥ − ⇒ <

−
w

w

w w

H w w
.   (89)
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Proof. We first show that the mapping defined by the right-hand side of (86) is a contraction
and then use the Banach Contraction Principle to conclude that it admits a unique fixed point
w* ∈ Z, see [2], that is we look for a constant LQ(Ts) < 1 such that

2 2 1 1 2 1 2
( ( ) ( ( ) () ) )s s sT T L T− − − ≤ −⋅ + ⋅ + QQ w wH g gw w w wHQ .   (90)

For the calculation of the Lipschitz constant LQ(Ts) in (90) the expression

2 2

2 1 2 2 1 1

2 2

2 1 2 1 2 1 2 1

( ) ( ) ( ( ) ( ))

( ) ( ) ( ) ( ) 2( ( ) ( )) ( ( ) ( ))T

− = + − +

= − + − + − ⋅ −

r r Q r P r Q r P r

Q r Q r P r P r P r P r Q r Q r
  (91)

can be used. This leads to

2 2 2

2 1 2 1 2 1

2 2 1 1 1 2

( ) ( ) ( ) ( )

2 ( ) ( ( ) ( )) 2 ( ) ( ( ) ( )).T T

− = − + −

+ ⋅ − + ⋅ −

r r Q r Q r P r P r

P r Q r Q r P r Q r Q r
  (92)

Due to ||P(r2) − P(r1)||
2 ≥ 0, Q(r1) ∈ Z, Q(r2) ∈ Z, P(r2)

T⋅( Q(r2) − Q(r1)) ≥ 0 and P(r1)
T⋅( Q(r1)

− Q(r2)) ≥ 0 according to (12), (92) permits the estimation

2 1 2 1( ) ( )− ≥ −r r Q r Q r .   (93)

This leads with (90) to

2 2 1 1 2 1

2 1

max abs 2 1

( ( ) ( ( ) ( ) ( )

                              

                              ( )

) )s s s

s

s

T T T

T

Tλ

⋅ +− − − ≤ − ⋅ −

≤ − −

≤ −

⋅

−

+H g H gQ w w Q w w I H w w

I H w w

I H w w

  (94)

where λmaxabs(I − TsH) is the eigenvalue of I − TsH with maximal absolute value. We can the-
refore put LQ(Ts) = |λmaxabs(I − TsH)| provided we ensure that

max abs ( ) 1sTλ − <I ΗΗΗΗ .   (95)

A one-to-one correspondence between the eigenvalues of I − TsH and those of H follow from
the formula

1
( )     s

s

T
T

λλ −− ⋅ = ⇔ ⋅ =I H x x H x x

for x ∈ ℜn. By virtue of (87), each eigenvalue λ of I − TsH thus satisfies the inequality

max min1 1 ( ) ( ) 1 ( ) 1s s sT T Tλ λ λ− < − ≤ − ≤ − <H I H H ,   (96)

and (95) follows. We conclude that there exists a unique w* ∈ Z such that

* * *( ))( sT += − ⋅w Q w wH g ,   (97)

and that w(k) converges to w* as k → ∞. We have to check that w* = w∞. Indeed, by virtue of
Lemma 2.1, the equilibrium condition (36) is fullfiled if and only if −F’(w∞) = −(H⋅w∞ + g) ∈
N(w∞), which is in turn equivalent to −Ts(H⋅w∞ + g) ∈ N(w∞) for every Ts > 0, that is

( ) ( ))(T sT
∞ ∞= − ⋅ +wo Q wH g .   (98)
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Using now Lemma 2.1 with v = o, w = w∞ and q = −Ts(H⋅w∞ + g) we infer that equations (97)
and (98) are equivalent, hence w* and w∞ coincide.

It remains to establish the estimate (89) for N under condition (88). It follows from (96) that
LQ(Ts) = 1 − Tsλmin(H), so that for every k ∈ ℵ we have

( 1) ( ) ( )sk L T k∞ ∞+ − ≤ −Qw w w w .

By induction we obtain

0( ) ( ( ))N
sN L T∞ ∞− ≤ −Qw w w w .   (99)

Assume now that

min

ln( )

( )s

N
T

ε
λ

≥ − w

H
.

Then

min

min

ln(1 ( ))
( ( )) ,   where  

( )
N s

s
s

T
L T

T
κ λε κ

λ
−≤ = −Q w

H

H
.

Taking into account the fact that −ln(1 − x) > x for every x < 1, we obtain κ > 1, and combi-
ning the last inequality with (99) we complete the proof.   

5. Projection mapping Q for polyhedral constraints with regular matrix U

The calculation of the projection mapping Q in (86) requires the solution of the minimum
norm problem (11). The solution of this problem can be equivalently formulated as the soluti-
on of the special quadratic program

1
( ) arg min{ }

2
T T

Z∈
= ⋅ − ⋅

z
Q r z z r z (100)

with r = w(k) − Ts(H⋅w(k) + g) and in general have to be solved numerically for every time
step k. In principle this is also the case if we restrict ourselves to the practically important case
of  a feasible solution set

{ }   nZ = ∈ℜ ⋅ − ≥w U w u o (101)

which is defined by linear inequality constraints with a quadratic matrix U ∈ ℜn×n and a vec-
tor u ∈ ℜn. Every row Uij wj ≥ ui, i = 1 . . n in the inequality constraints of (101) defines a half
space in ℜn. The convex solution set Z is then given as the intersection of this n half spaces.
The convex subset Z formed by the linear inequality contraints in (101) is a polyhedral cone
with vertex at u and thus a special case of the more general convex subset Z formed by the
concave function according to (4).

If we assume that the convex subset Z is an orthant which means a convex polyhedron defined
by

{ }   nZ = ∈ℜ ⋅ − ≥w I w u o (102)
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with the identity matrix I ∈ ℜn×n, the solution of the quadratic program (100) and thus the
projection mapping Q can be formulated analytically. Fig. 2 shows the geometrical interpreta-
tion of the projection mapping Q in the plane.

a)

w1

u1

w2u2

w

Z

r

Q(r)

b)

w1

u1

w2u2

w

Z

r Q(r)

w + N(w) w + N(w)

w + T(w)

w + T(w)

c)

w1

u1

w2u2

w

Z

r

Q(r) = w

d)

w1

u1

w2u2

w

Zr

Q(r) = r

w + N(w)

w + N(w)

w + T(w) w + T(w)

Figure 2: Geometrical interpretation of the projection mapping Q for an orthant (102) with n
= 2 in a corner w: a,b) r ∉ w + N(w) ∪ w + T(w) c) r ∈ w + N(w) d) r ∈ w + T(w)

Obviously in this special case the solution of the quadratic program (100) can be expressed
explicitly by

,
( )   ,  1 . . 

,
i i i

i
i i i

r r u
i n

u r u

≥
= = <

Q r . (103)

In this case the solution of the vector difference equation (86) decouples into the solution of n
scalar difference equations which can be calculated independently after the determination of
the gradient F′(w(k)) = H⋅w(k) + g of the unbounded problem.

According to the remark at the end of section 3 a deformation of the convex set Z defined by
(101) to an orthant Z* → U(Z) defined by (102) is always possible by choosing the concrete
scalar product (79) instead of the canonical one defined by (9). In this case the corresponding
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projection mapping Q* in the numerical formulation of (83) can be calculated according to
(103) instead of (100) and this justifies the choice of the scalar product in (81)-(82).

6. Application example: Hysteresis filter synthesis with the modified
Prandtl-Ishlinskii approach

The modified Prandtl-Ishlinskii hysteresis operator has been developed recently for the mode-
ling and compensation of asymmetrically complex hysteretic nonlinearities [7]. It is defined as
the concatenation of a Prandtl-Ishlinskii hysteresis operator H and a Prandtl-Ishlinskii super-
position operator S and in vector notation is given by

0[ ]( ) [ [ ]]( ) [ [ , ]]( )
S H

T T
S H Hx t S H x t x tΓ = = ⋅ ⋅r rw S w H z . (104)

The operator H consists of a weighted linear superposition of d+1 elementary play operators
HrH, which are included in (104) in the d+1-dimensional vector HrH. The rate-independent
characteristic of the play is characterised by the threshold-dependent x-y-trajectory, see Fig.
3a. The weights wHi, the thresholds rHi and the initial values zH0i, i = 0 . . d of the play opera-
tors are considered in the vector notation (104) by the vector of weights wH

 T = (wH0 wH1 . .
wHd), the vector of thresholds rH

 T = (rH0 rH1 . . rHd) with rH0 = 0 and the vector of the initial
values zH0

T = (zH00 zH01 . . zH0d). The outputs of the elementary operators zHi = HrH[x,zH0i], i = 0
. . d represent the inner system state or the memory of the discrete-threshold Prandtl-Ishlinskii
hysteresis operator.

 x

− rH

 HrH

 rH ≥ 0

a)

 x

 rS < 0

rS = 0

rS > 0

 SrS

b)

Figure 3: x-y-trajectory of the play (a) and the one-sided dead-zone operator (b)

The memoryless superposition operator S describes the deviation of the real characteristic
from the odd symmetry property of the operator H [7]. It consists of the weighted linear su-
perposition of 2l+1 one-sided dead-zone operators SrS, which are included in (104) in the
2l+1-dimensional vector SrS. The rate-independent transfer characteristic is characterised by
the threshold-dependent x-y-trajectory shown in Fig. 3b. The weights wSi and the thresholds
rSi, i = −l . . +l of the one-sided dead-zone operators are considered in the vector notation
(104) by the vector of weights wS

 T = (wS−l . . wS0 . . wSl) and the vector of thresholds rS
T = (rS−l

. . rS0 . . rSl) with rS0 = 0. The corresponding compensator

1 1 1
0[ ]( ) [ [ ]]( ) [ [ ], ]( )

H S

T T
H S Hy t H S y t y tΓ − − −

′ ′′ ′ ′= = ⋅ ⋅r rw H w S z (105)

exists uniquely in the convex polyhedron
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1

2 1
   

d
H H H H

l
S S S S

Ω
+

+

  ℜ          = ∈ ⋅ − ≥           ℜ            

w U O w u o

w O U w u o
(106)

and follows from the inversion of H and S and the concatenation of S -1 and H -1 [7]. The ma-
trices and vectors UH ∈ ℜd+1×d+1, uH ∈ ℜd+1, US ∈ ℜ2l+1×2l+1 and uS ∈ ℜ2l+1 in the inequality
constraints in (106) are given by

1 0 . . 0

1 1 . . 0

. . . .

. . . .

1 1 . . 1

H

 
 
 
 =
 
 
  

U , .

.
H

ε
ε

ε

 
 
 
 =
 
 
  

u ,

1 1 1 0 0

0 1 1 0 0

0 0 1 0 0

0 0 1 1 0

0 0 1 1 1

S

 
 
 
 
 =  
 
 
 
  

U   and  S

ε

ε
ε
ε

ε

 
 
 
 
 =  
 
 
 
  

u .

ε  > 0 is a lower bound and a design parameter which permits the change of strict inequality
constraints by the inequality constraints in (106).

According to (105) the model structures of the Prandtl-Ishlinskii operators H and S are ob-
viously invariant with respect to the inversion operation. For the calculation of the inverse
filter from the model and vice versa only the thresholds rH and rH’, the weights wH and wH’and
the initial values zH0 and zH0’ have to be calculated by the corresponding mappings

wH′ = ΦΦΦΦH(wH) or wH = ΦΦΦΦH(wH′), (107)

 rH′ = ΨΨΨΨH(rH ,wH) or  rH = ΨΨΨΨH(rH′ ,wH′) (108)

     zH0′ = ΘΘΘΘH(zH0,wH) or zH0 = ΘΘΘΘH(zH0′,wH′) (109)

 wS′ = ΦΦΦΦS(wS) or  wS = ΦΦΦΦS(wS′) (110)

and

  rS′ = ΨΨΨΨS(rS ,wS) or   rS = ΨΨΨΨS(rS′ ,wS′) . (111)

The derivation of these mappings is not the aim of this article. For this purpose we refer to the
original papers [7].

6.1 Generalised error model

The invariance of the Prandtl-Ishlinskii operators H and S with respect to the inversion opera-
tion makes it possible to generate a generalised error model

1
0( ) [ ]( ) [ ]( ) [ , ]( ) [ ]( )

H S

T T
H H Se t H x t S y t x t y t−

′′= − = ⋅ − ⋅r rw H z w S (112)
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which depends linearly on the weights wH and wS’. This generalised error model is the starting
point for the synthesis of the modified Prandtl-Ishlinskii hysteresis operator Γ and its compen-
sator Γ -1 starting from the measured input signal x(t) and output signal y(t). For the real values
rH, wH, zH0, rS’, wS’ of the generalised error model follows

0 0
0 0

( ) ( [ , ]( ) [ ]( )) 0
H S

T T
H S

H H
H H

e t w x t y t
w w

′
′

= ⋅ − ⋅ =r r

w w
H z S

for all t and wH0 > 0. Therefore the expression between the parentheses has to be zero for all
times. Thus the error model is overdetermined with one degree of freedom and consequently
wH0 = 1 can be given as a real value. With x = HrH0[x,zH00] follows the alternative representa-
tion (1)

( ) ( ) ( )Te t t tζ= + ⋅wΨΨΨΨ

with

( ) ( )t x tζ = ,

( )1
T T

H Hd Sw w ′=w w

and

( )
1 01 0( ) [ , ]( ) [ , ]( ) ( ( ))

H Hd S

T
r H r H dt H x t H x t y tΨΨΨΨ ′= − rz z S .

The synthesis of the modified Prandtl-Ishlinskii hysteresis operator Γ and its compensator Γ -1

is realised in four steps.

6.2 Model and compensator synthesis procedure

In the first synthesis step the thresholds and the initial hysteretic state values are determined
by the formulas

0
max{| ( )|}   ;   1 . . 

1 E
Hi

t t

i
r x t i d

d ≤ ≤
= =

+
, (113)

0

0

min { ( )}   ;    . . 1
1

max{ ( )}   ;   0 . . +
1

E

E

Si
t t

Si
t t

i
r y t i l

l
i

r y t i l
l

≤ ≤

≤ ≤

′ = = − −
+

′ = = +
+

(114)

and

0 0   ;   1 . . H iz i d= = . (115)

In addition to the model orders d and l, the maximum of the absolute value of the measured
input signal and the maximum and minimum value of the output signal must be given. Mo-
reover, during identification (115) assumes the evolution of the hysteretic state from the so-
called „virgin“ or „demagnetised“ state.

The determination of the weights is the aim of the second step and follows from the con-
strained least-square minimisation of the error model (1), which means by the quadratic mi-
nimisation of (2) with the polyhedral constraints (101). The matrix U in (101) follows from
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the matrix in (106) by canceling the first row and column. The vector uT in (101) results from
the vector (uH

T uS
T) − (iT oT) with iT = (1 1 . . 1) followed by canceling the first column.

This procedure guarantee the existence of the operators H -1 and S starting from the operators
H and S -1 and vice versa and thus the applicability of the transformation mappings (107-111).
According to the last sections the quadratic minimisation of (2) with the polyhedral con-
straints (101) can be realized by the numerical time-integration of the corresponding projected
dynamical system (68). For this purpose the initial values of (68) must lie within the feasible
region. A meaningful assumption for the determination of the initial values is to have no in-
formation about the hysteretic nonlinearity. In this case it is meaningful to choose the initial
values for the error model in such a way that the model Γ and its compensator Γ -1 exhibit the
behaviour of the identity operator I. From this idea follows the initial values

0

2 1

(0 0 0 0 1 0 0 )T

d l+

=w (116)

with wS00 = 1.

According to section 3 the stability properties of the projected dynamical system (68) depend
decisively on the definiteness properties of the matrix H according to (65). Condition (65)
demands the nonexistence of any vector w apart from the zero vector which is perpendicular
to the signal vector ΨΨΨΨ(t) generated by the elementary operators for all 0 ≤ t ≤ tE. This conditi-
on is fulfilled if the components of the signal vector are all different from zero and moreover
linearly independent in the interval 0 ≤ t ≤ tE. The latter condition is given by the fact that be-
cause of (113-114) the elementary operators in the signal vector have different thresholds. The
former condition  requires the crossing of every threshold rHi, i = 1 . . d and rS’i , i = −l . . l by
the amplitudes of the input signal x(t) and the output signal y(t). Because of (113-114) this
property of the input and output signal is given a-priori as well.

In the third step the weights of the identified Prandtl-Ishlinskii hysteresis operator H have to
be completed by

1(1 )T
H d=w w w . (117)

In the fourth step the corresponding model Γ and the corresponding compensator Γ -1 are gene-
rated by the transformation mappings (110-111) and (107)-(109), respectively.

6.3 Identification results

To test the filter design method presented above, a micropositioning stage based on a piezo-
electric stack actuator as a driving element was realized. Fig. 4 illustrates the test and measu-
rement equipment of the experimental part. It consists of a digital signal processor (DSP)
which generates the digital driving signal for the piezoelectric actuator. This signal is conver-
ted by a 12-bit digital-to-analog converter and amplified by an high-voltage power amplifier
to an analog high-voltage signal of up to 1 kV. The output of the high-voltage power amplifier
is measured by an additional voltage measurement circuit and converted to a digital signal by
a 12-bit analog-to-digital converter. The displacement of the actuator is directly digitally mea-
sured by a high-precision laser-interferometer with a resolution of 5 nm. The signals from the
voltage measurement circuit and the interferometer are fed back to the DSP for characterizati-
on, identification and control purposes.
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Figure 4: Test and measurement equipment of the experimental part

The measured hysteretic relation W between the driving voltage signal U and the displacement
signal s of the actuator in the large signal range is shown in Fig. 5a. The light grey curve in
Fig. 5b depicts the relationship between the voltage U as the input quantity x and the dis-
placement s as the output quantity y modeled by a modified Prandtl-Ishlinskii hysteresis ope-
rator Γ with the model orders d = 5 and l = 2 and identified with the procedure described in
section 6.2. The relative modeling error defined by

[ ]

[ ]

U s
e

UΓ

Γ
Γ

∞

∞

−
= (118)

amounts 17.3% for the best linear approximation through the origin and 1.5% in the case of
the operator-based approximation. The black curve in Fig 5b shows the relationship between
the given displacement sc and the voltage U of the corresponding inverse modified Prandtl-
Ishlinskii hysteresis operator Γ -1. The dark grey curve in Fig. 5b displays the compensation
effect of the concatenation W[Γ -1] of the inverse hysteretic filter and the real hysteretic nonli-
nearity of the piezoelectric actuator. The relative feedforward control error, definded by

1

1

1[ ]

[ [ ]]

[ [ ]]

s s

W
s

W s s
e

W sΓ

Γ

Γ
−

−

∞
−

∞

−
=  (119)

amounts in this case to 2.2%. The thresholds and weights of the generalized error model (112)
as well as the thresholds and weights of modified Prandtl-Ishlinskii hysteresis operator (104)
and ist inverse (105) are shown in table 1.
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Table 1: Thresholds and weights of the modified Prandtl-Ishlinskii hysteresis operator Γ and
the inverse Γ -1

The thresholds rH and rS’ of the generalized error model was determined according to (113),
(114) with max{|U(t)|} = +500V, min{s(t)} = −24,08µm and max{s(t)} = +19,38µm for 0 ≤ t
≤ tE. The weights wH and wS’ of the generalized error model (112) was determined by the time
integration of the projected dynamical system (68) which corresponds to the alternative for-
mulation (1) of the generalized error model (112) and by the completion of the weights accor-
ding to (117). This procedure is described in detail below. The remaining thresholds rS and
weights wS of the modified Prandtl-Ishlinskii hysteresis operator as well as the remaining
thresholds rH’ and weights wH’ of the inverse modified Prandtl-Ishlinskii hysteresis operator
results from the transformation mappings (110-111) and (107)-(109), respectively.
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Figure 5: a) Complex hysteretic nonlinearity W of a piezoelectric stack actuator b) Modified
Prandtl-Ishlinskii operator Γ , the inverse Γ -1 and the concatenation W[Γ -1]

The determination of the weights w of the error model (1) with projected dynamical systems
was the main subject of this article. The application of this method should now be demon-
strated. With the input and output measurement data shown in Fig. 5a we obtain a Hessian
matrix

I rH wH rH’ wH’
0 +0.0⋅10+0 +1.0⋅10+0 +0.0⋅10+0 +1.0⋅10+0

1 +8.3⋅10+1 +3.0⋅10-1 +8.3⋅10+1 −2.3⋅10-1

2 +1.6⋅10+2 +2.0⋅10-1 +1.9⋅10+2 −1.0⋅10-1

3 +2.5⋅10+2 +1.5⋅10-1 +3.2⋅10+2 −6.0⋅10-2

4 +3.3⋅10+2 +1.4⋅10-1 +4.5⋅10+2 −4.9⋅10-2

5 +4.2⋅10+2 +1.6⋅10-1 +6.0⋅10+2 −4.6⋅10-2

j rS wS rS’ wS’
−2 −5.3⋅10+2 +2.6⋅10-3 −1.6⋅10+1 −2.4⋅10-2

−1 −2.7⋅10+2 +2.5⋅10-3 −8.0⋅10+0 −2.7⋅10-2

  0 +0.0⋅10+0 +2.8⋅10-2 +0.0⋅10+0 +3.5⋅10-1

+1 +2.4⋅10+2 −1.6⋅10-3 +6.5⋅10+0 +2.3⋅10-2

+2 +4.9⋅10+2 −2.1⋅10-3 +1.3⋅10+1 +3.5⋅10-2
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=H
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+
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 
 
 
 
 
 
 
 
 
 
 
 
 

+ ⋅ 
  − ⋅ − ⋅ − ⋅ − ⋅ − ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ 

a vector

T =g ( )8 7 7 7 6 5 6 6 6 51.3 10 9.7 10 5.8 10 2.6 10 6.9 10 3.4 10 1.5 10 6.4 10 1.3 10 3.2 10+ + + + + + + + + ++ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ − ⋅ − ⋅ − ⋅ − ⋅ − ⋅

and a scalar f = 77.6 10++ ⋅ as well as a matrix of inequality constraints

=U

1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1 1

+ 
 + + 
 + + +
 
+ + + + 
 + + + + +
 

+ + + 
 + + 
 +
 + + 
  + + + 

and a vector of inequality constraints

T =u ( )1 1 1 1 1ε ε ε ε ε ε ε ε ε ε+ − + − + − + − + − + + + + +

with ε = 1⋅10-6. In this case the inverse of the matrix U is give by

1− =U

1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1 1

+ 
 − + 
 − +
 

− + 
 − +
 

+ − 
 + − 
 +
 − + 
  − + 

.

The determination of the largest and smallest eigenvalue of the matrix U -1THU -1 yields the
parameter λmin(U

 -1THU -1) = 9.25⋅10+2 1/s and λmax(U
 -1THU -1) = 3.16⋅10+7 1/s. The numerical

integration is carried out with an error bound of εw* = 1⋅10-6 and an integration step size of Ts

= (λmax(U
 -1THU -1) + λmin(U

 -1THU -1)) -1 = 31.64⋅10-9 s. From this follows a necessary number
of integration steps of N = 4.73⋅10+5.

Table 2 shows the initial values w0 and the equilibrium values w∞(εw*) after the numerical
integration. Fig. 6 shows the time evolution of the distance measure F which decreases mo-
notonically from the initial value F(w0) = 6.9⋅10+7 to the finite value F(w∞(εw*)) = 2.9⋅10+4 in
the equilibrium point.
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Table2: Initial values w0 and equilibrium values w∞(εw*)

The dashed curve in Fig. 6 displays the time evolution of F in the unconstrained case Z = ℜ10

and the solid curve depicts the time evolution of F in the constrained case Z = {w ∈ ℜ10 | U⋅w
− u ≥ o}. Obviously the influence of the projection mechanism to the time evolution of F is
only weak.

 8

0
-1

 t
 s  -1   16

F

×10-3

×10+7

Figure 6: Time evolution of the distance measure F

The Figs. 7a-j shows the time evolution of the single components wi, i = 1 . . 10 of the vector
w. Also in these cases the dashed curves display the time evolution of wi, i = 1 . . 10 in the
unconstraind case Z = ℜ10 and the solid curves depicts the time evolution of of wi, i = 1 . . 10
in the constrained case Z = {w ∈ ℜ10 | U⋅w − u ≥ o}. Due to the special structure of the matrix
U and U -1 the components w1 and w8 are not influenced by the transformation Z* → U(Z). In
these two coordinate directions the boundary of the feasible set Z depends not on the other
components of w. Therefore the boundary ∂Z is parallel to the w1-coordinate axis and the w8-
coordinate axis. In both cases the feasible set is marked as a grey area and starts in w1-
direction at -1+ε and in w8-direction at +ε, see Fig. 7a and Fig. 7h. The effect of the projection
mechanism can be recognized very clearly by the time evolution of the component w1 depicted
in Fig. 7a. In the unconstrained case the component w1 leaves the feasible set Z for a certain
time period whereas in the constrained case due to the projection mechanism the component
w1 slides along the boundary before it returns into the feasible set. Both in the unconstrained
and in the constrained case the equilibrium points w∞(εw*) are equivalent. In contrast to the

i wE0 wE∞(εw*)
1 +0.0⋅10+0 +3.0⋅10-1

2 +0.0⋅10+0 +2.0⋅10-1

3 +0.0⋅10+0 +1.5⋅10-1

4 +0.0⋅10+0 +1.4⋅10-1

5 +0.0⋅10+0 +1.6⋅10-1

6 +0.0⋅10+0 −2.4⋅10-2

7 +0.0⋅10+0 −2.7⋅10-2

8 +1.0⋅10+0 +3.5⋅10-1

9 +0.0⋅10+0 +2.3⋅10-2

10 +0.0⋅10+0 +3.5⋅10-2
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constrained case there exists time periods in the unconstrained case where the compensator
does not exists.
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Figure 7: Time evolution of the vector w

But the existence and uniqueness at every time point of the identification is a basic prediction
for every iterative self-learning or adaptive inverse feedforward control scheme. It is exactly
this property which was guaranteed by the projection mechanism in (68).

7. Conclusion

In control theory many identification problems with parameters which are subject to specific
restrictions can be stated as convex programming problems. These problems can be solved
on-line by the time-integration of a special time-invariant projected dynamical system with a
discontinuous right-hand side. The paper develops an alternative formulation of this projected
dynamical system based on a multidimensional stop operator. In contrast to the original for-
mulation the new right-hand side is continuous and the problem is thus accessible to conven-
tional analysis methods which easily give results on existence, uniqueness and stability
properties of the corresponding solution trajectories. In future works the presented on-line
identification method will be used as a part of an iterative compensation scheme for memory-
less and complex hysteretic nonlinearities.
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