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Abstract
The inherent sensor effects in magnetostrictive materials allow in combination with proper measurement and
signal processing methods the simultaneous use of a magnetostrictive transducer as both sensor and actuator.
Operating in this way the transducers are frequently called self-sensing actuators. This paper presents and evalu-
ates two different methods, a direct and an indirect one, for using these inherent sensor effects with respect to
their principal feasibility.
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Introduction

The elongation of ferromagnetic crystals due to a
magnetic field is called the magnetostrictive effect.
Due to this magnetostrictive effect these materials
can be applied for the construction of actuators. On
the other hand a mechanical load of the material
produces a variation of its magnetisation. This beha-
viour is called the Villary effect and allows the con-
struction of sensors. The inherent sensor effects in
magnetostrictive materials facilitate in combination
with proper measurement and signal processing
methods the simultaneous use of a magnetostrictive
transducer as both sensor and actuator. Operating in
this way the transducers are frequently called self-
sensing actuators and lead to a miniaturised, simpler
and cheaper mechatronic system design [4]. At pres-
ent there exist two different methods, a direct and an
indirect one, for using these inherent sensor effects.

Direct and indirect use of sensor effects

Fig. 1 shows the principle of a magnetostrictive
transducer. A cylindrical coil surrounds the magne-
tostrictive rod and generates the magnetic field
strength required for the actuation function. If the
magnetic field is homogeneous along the axis of
length d and the cross-sectional area A of the rod,
the magnetic flux φ results from the magnetic flux
density B according to φ(t) = AB(t). The relationship
between the magnetic field strengh H in the magne-
tostrictive rod and the magnetomotive force Θ, de-
fined as the product of the winding number n and the
driving current I

Θ(t) := nI(t), (1)

is given by the magnetomotive force law. With the
homogeneous field distribution and assuming an
ideal flux guide this law results in Θ(t) = dH(t). For
a given rod length d and cross-section area A the rod
displacement s follows from the rod strain S accor-
ding to s(t) = dS(t) and the mechanical load F fol-

lows from the stress T in the rod according to F(t) =
AT(t).

Fig. 1: Principle of a magnetostrictive transducer

The voltage across the electrical leads
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results from the voltage drop across the ohmic coil
resistance R and the induction voltage. The magne-
tomechanical part of the system is determined by the
quasistatic transfer characteristics of the magne-
tostrictive material. These mappings couple the
magnetic quantities B and H as well as the mechani-
cal quantities S and T and thus, considering the rod
geometry, also the measurable, integral quantities φ,
Θ, s und F. If the magnetomotive force Θ and the
mechanical load F are regarded as independent
quantities the magnetomechanical transfer characte-
ristic is given by

( ) [ , ]( )St F tφ Γ Θ= , (3)

( ) [ , ]( )As t F tΓ Θ= . (4)

The mappings ΓS and ΓA in the sensor equation (3)
and the actuator equation (4) respectively must be
interpreted as hysteresis operators which take into
account the hysteretic memory in the transfer cha-
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racteristics of the magnetostrictive material introdu-
ced by the domain switching processes.

The direct sensing method makes use of the de-
pendence of the magnetic flux φ on the magnetomo-
tive force Θ and the mechanical load F according to
(3) and reconstructs the mechanical load F by means
of measurements of the magnetic flux φ and the
magnetomotive force Θ. For this purpose the inverse

1( ) [ , ]( )SF t tΓ Θ φ−= , (5)

of the φ-F mapping with Θ as a parameter must be
calculated.

The indirect sensing method uses the dependence
of the small-signal inductance, defined as
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on the driving current I = Θ/n and the mechanical
load F. For this purpose the driving current I is di-
vided into a low-frequency signal IA with large am-
plitude and a sinusoidal high-frequency test signal IT

with small amplitude. Introducing (3) into (2) and
with (6) and
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follows the relationship
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between the clamp voltage V and the driving current
I. According to (6) the small-signal inductance L can
be interpreted as the effective slope of the φ-Θ map-
ping in the operating point defined by the driving
current I and the mechanical load F. If the amplitude
of the test signal is sufficiently small the current IT

drives the φ-Θ mapping in the linear range and thus
produces no high-frequency variation of the in-
ductance L. Therefore the influence of the test signal
can be neglected in the argument of L. In this case
the coil voltage V consists of a high-frequency part
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which can be separated from the low-frequency part
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by means of a bandpass filter. An experimental de-
termination of the small-signal inductance from the
measurements of IT and VT, i.e. a measurement value
Lm, follows from a phase-selective demodulation, a
parameter identification or a signal analysis based on
a discrete Fourier transformation (DFT). Finally the
force reconstruction requires an inversion

1( ) [ , ]( )A mF t L I L t−=    (11)

of the inductance model L[IA,F] with respect to the
mechanical load F and with the low-frequency dri-
ving current IA as a parameter.

Flux and inductance measurement

The direct method requires the simultaneous mea-
surement of the magnetomotive force and the ma-
gnetic flux. The flux measurement can be achieved
directly by a Hall element which is integrated into
the transducer casing [6]. This option requires the
consideration of this additional functionality in the
design stage.

The electrical measurement circuit in Fig. 2 al-
lows an experimental determination of the magne-
tomotive force Θ and the magnetic flux φ by means
of the coil current I and voltage signal V of the
transducer.
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Fig. 2: Indirect flux measurement with an electrical
measurement circuit

The magnetomotive force follows with (1) imme-
diately from the voltage VW across the current mea-
surement resistance RI. The frequency response of
the measurement voltage Vφ with respect to the ma-
gnetic flux φ and the driving current I of the transdu-
cer is given by
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According to (12) the magnetic flux determines the
measurement voltage Vφ for sufficiently high fre-
quencies and is thus a measure for this quantity in
this frequency range. In contrast to the flux measu-
rement with the Hall element it is not possible to
measure a static magnetic flux with the measurement
circuit shown in Fig. 2.

According to (9) the experimental determination
of the small-signal inductance Lm with the test signal
approach results from an amplitude comparison of
the voltage VT − RIT across the inductance and the



measured driving current IT at the test signal fre-
quency fT. The resistance R of the coil windings is
widely independent of the operating point of the
transducer and the signal frequency and can be de-
termined experimentally with high precision in ad-
vance. In this case the small-signal inductance is
given by
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The evaluation of this expression requires a band-
pass filtering of the current and voltage signals at the
test signal frequency as well as a demodulation to
transform the high-frequency information into the
base band. An alternative for the evaluation of (13)
is the DFT-based digital signal analysis [7]. If the
sampling frequency fs is properly chosen the test
signal frequency fT corresponds to a frequency point
in the discrete frequency spectrum of the DFT. In
this case there is no leakage effect and the value of
the discrete frequency spectrum at this frequency
point corresponds to the amplitude value of the
signals.

Another alternative for the determination of the
inductance is offered by means of the discrete-time
approximation
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of the differential equation (9) with the sampling
time Ts. An immediate evaluation of (14) with re-
spect to Lm becomes crucial for small current chan-
ges occuring in particular for high-frequency
sampling and due to the high sensitivity to external
disturbances as for example signal noise. A suppres-
sion of these effects requires measurements of the
current and voltage signal over several, i.e. k = 1 . .
N, sampling points. Accordingly, the identification
of the inductance results from the solution of the
overdetermined system of linear equations
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which can be solved either directly or recursively
[2,3].

Force reconstruction and system inversion

In the last step, the use of the self-sensing effect
requires an inversion of the φ-F mapping according
to (5) in the case of the direct approach and an in-
version of the L-F mapping according to (11) in the
case of the indirect approach. Therefore, above all
we have to specify the precondition for a successful
inversion and thus a successful reconstruction of the

mechanical load. This object should now be
discussed representatively by means of the φ-F map-
ping.

At time t the force reconstruction unit determines
that force value F(t) which generates the measured
magnetic flux value φ(t) for the measured magneto-
motive force value Θ(t). This can be done with the
sensor model (3) by means of solving the implicit
equation

( ) [ , ]( ) 0St F tφ Γ Θ− =    (16)

with the simultaneous measurements Θ(t) and φ(t).
This implicit equation possesses a unique solution
for time t if and only if the continuous φ-F mapping
is strongly monotone for all Θ. This is shown in Fig.
3 for a hysteretic mapping ΓS which is typical for
solid-state transducers.
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Fig. 3: Solution of the implicit equation for a given
time t for: a) a strongly monotone characteristic
b) a non strongly monotone characteristic

At first glance, due to the hysteretic φ-F mapping
there exists a multivalued solution in Fig. 3a. But the
different solutions differ in the history of the system
which is given here by the couple (φ(ti),F(ti)). With ti

we denote the time of the last extreme value of the
force signal [1,5]. As a consequence we can calcu-
late the inverse mapping (5) by the numerical soluti-
on of (16). According to Fig. 3b in the case of a non
strongly monotone φ-F mapping we have amplitude
ranges for φ with a multivalued solution for the same



history of the system and thus an unique inverse
mapping ΓS

-1 does not exist.

Experimental results

 Fig. 4 shows the experimentally determined Lm-F
characteristic of a magnetostrictive transducer with n
= 1200 coil windings for different low-frequency
driving currents IA. Here and in Fig. 5 below tension
forces are defined as positive loads.
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Fig. 4: Current dependent Lm-F characteristic of a
magnetostrictive transducer (indirect approach)

 Beside the hysteretic behaviour, this characteristic
exhibits certain ranges of non monotonicity with
respect to the mechanical load. Moreover, the loca-
tion of the maximum value on the force axis depends
clearly on the current operating point. Due to this
property a unique reconstruction of the mechanical
load is not possible even for a perfect model of the
Lm-F mapping. Therefore, the proposed indirect
approach is not suited for the realisation of a mag-
netostrictive self-sensing actuator.
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 Fig. 5: Magnetomotive force dependent φ-F map-
ping of a magnetostrictive transducer (direct ap-
proach)

In contrast the experimentally determined φ-F
mapping in Fig. 5 illustrates a monotone character-
istic independently of the magnetomotive force
operating point for Θ > 0. Therefore, a force recon-
struction and thus a realisation of a magnetostrictive
self-sensing actuator is at least in principal possible
using the direct approach. But this task requires a
sufficiently precise modeling of the measured φ-F
mapping by means of mathematical models which
consider the magnetomotive force dependent hys-
teresis characteristic in the inherent sensor effect.

Summary and prospects

This paper presents and evaluates two different
methods for using the inherent sensor effects with
respect to their principal feasibility. As the main
result the indirect approach based on the measure-
ment of the small-signal inductance leads to funda-
mental difficulties for the realisation of a magne-
tostrictive self-sensing actuator which arise from the
non invertibility of the current-dependent induc-
tance-force characteristic. In contrast, the direct
approach based on the measurement of the magnetic
flux provides a strongly monotone flux-force char-
acteristic which allows at least in principal the
unique reconstruction of the mechanical load.
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