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ABSTRACT

Extended Kalman Filters (EKF) have widely been used as
state estimators in non-linear dynamic systems. In recent
years, a new variant of Kalman filtering has emerged. So-
called sigma-point Kalman filters (SPKF) exhibit a better
accuracy and require less analytical calculations during the
design than conventional Kalman filters. As has been done
with EKFs, SPKFs can be used to estimate parameters of a
system as well. In this work, it will be shown why the ap-
plication of a SPKF is highly advantageous compared to the
EKEF in systems where only few update measurements are
available while the inputs occur at high frequencies. The
calibration of an inertial measurement unit serves as an ex-
ample for the parameter estimation.
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1 Introduction

The extended Kalman filter (EKF) has long been estab-
lished as a method for estimating the state of a discrete,
non-linear system [1]. The EKF is a suboptimal estimator
which is based on the linearisation of the system equations
around the current best estimate. Due to its recursive com-
position, it is suitable for real-time implementation. How-
ever, linearisation of the system equations around only one
point can result in a biased estimation. A range of variants
of the EKF has been suggested in the past. They aimed
at improving the filter’s estimation accuracy at the expense
of the computing time by including higher order terms in
the approximation of the system equations. These variants
feature a considerable demand on the filter design, since
they require the analytic computation of higher derivatives
of the system equations. Due to these disadvantages they
are rarely used in practice.

The sigma-point Kalman filter (SPKF) is a relatively
young class of estimators. One of these filters, the un-
scented Kalman filter (UKF), was first published by Julier
and Uhlmann. An overview of the different filters is given
in [2, 3]. The SPKF computes a representative set of points
in the state space. The system is then propagated using each
of these points as a starting point of the trajectories. The
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spread of the propagated points in the state space allows
to determine how the stochastic distribution (described by
mean and covariance) of the state has developed as a result
of the non-linear transformation represented by the sys-
tem function. Similar to the Kalman update step, mean
and covariance are corrected when new measurements are
available. Therefore, these filters feature similarities to the
Kalman filter as well as to Monte Carlo methods. Com-
pared to the Monte Carlo methods, their advantage is that
the number of points they require is smaller by several or-
ders of magnitude: usually only 2n + 1 sigma points are
needed, whereby n is the dimension of the state vector.
Compared to EKFs, their design involves less work, since
they do not require analytic computation of the derivatives
and still feature a higher precision than EFKs [3]. While
the SPKF can be implemented such that the algorithms are
of the order O(n?), the same as for square-root EKFs, the
computing time of an SPKF is generally higher than that of
an EKF. This is due to the fact that the system and measure-
ment equations must be computed 2n + 1 times, once for
each sigma point. This disadvantage and the fact that the
filters are relatively unknown are probably the reasons why
SPKFs have only been used to date in special fields such as
speech signal processing [4].

However, some estimation tasks are less time critical:
system parameters which are constant over time may be
estimated in an identification process prior to system op-
eration and therefore need not be computed online. EKFs
have been used for parameter estimation in a wide range of
applications but they are known to have convergence prob-
lems when too many parameters have to be estimated. In
contrast, parameter estimation with SPKFs has shown to be
more reliable.

In this work, a special case of parameter estimation
is examined where the underlying system is dynamic and
non-linear and where measurements that serve as a refer-
ence for the estimation (i.e. Kalman update measurements)
are rare compared to the dynamic system’s inputs. It will
be shown that the application of an EKF would require a
much more complex filter structure than that of a SPKFE.

The following section compares the theoretical bases
of EKF and SPKF. In section 3, the SPKF-based param-
eter estimation with rare updates is explained. Section 4
describes an example for this technique: the SPKF is used



to identify the parameters of an inertial measurement unit.
Measurement results are presented in section 5. The paper
ends with a summary and an outlook.

2 Extended Kalman filters vs. sigma-point
filters

This paper deals with a discrete dynamic system which can
be described as a first-order Markov system with the fol-
lowing equations:

Xp1 = f(xp,ug, k) +nj ¢))
vi = h(xg,ug, k) +n)’ 2

x, u and y are vectorial state, input and output variables,
k is the current sample, n® and n™ stand for zero-mean
system and measurement noise, and f and h symbolize the
(possibly non-linear) system function and the measurement
function of the process, respectively. The state vector x is
of dimension n, the output is of dimension m. ng, nj* and
Xy, are independent. Stochastic state estimation is used to
compute the current state of the system from the known
input and output data, whereby only certain characteristics
(e.g. mean and covariance) are given for n® and n™

The most widely used estimator for nonlinear systems
is the EKF. It consists of two steps: an a-priori estima-

tion X, , before a measurement has been taken and an
a-posteriori estimation 5(,1;1 with knowledge of the mea-
surement!. This method results in the following equations

where E{-} stands for the expectation:

X, = f(f(:_l,uk_l,k -1
~ E{xXplyr-1,Yr-2,---} (3)
X0 = %, +Ki[yr — ¥
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The Kalman gain matrix K, is computed using the matrix
P, , an estimation of the state’s covariance, given by

Pk ~ E{(Xk — E{xk})(xk — E{Xk})T} (6)

P;/ * is computed by linearizing the system equations
around the current estimate X, :

Pra = i) o "
P o= [-Kl]e; ®)
- R e (2w o

where Z, = E{nin{"}, W, = E{n?"n""} and Lis the
identity matrix. Taking a closer look at (9), one can see that

IThroughout this paper, variables with a hat (*) stand for estimated
values while non-hatted variables represent the true values.

this is nothing but a linear approximation of the following
equation:

P, )" (10)

K,=P_ vu.k

zy,k
with P, denoting the covariance matrix of the innovation
(yr — h(xk_1 , g1,k — 1)) and P the covariance ma-
trix between the error of the a-priori estlmate and the output
error. Eq. (3) and (7) are referred to as the Kalman predic-
tion step, and (4), (8) and (9) as Kalman update step. For a
more detailed discussion, see for example [1].

Since the system equations are linearized around the
current estimate, the stochastic distribution of the state of
the EKF is disregarded. This can lead to a significant un-
derestimation of the state’s covariance matrix and even to
a biased estimate: imagine a ball rolling on the ridge of a
mountain — since this path is "unstable’, the ball will soon
leave the ridge and roll down on the one or the other side.
If the starting position of the ball was not known precisely,
a Monte Carlo analysis would result in some trajectories
on the one side and some on the other. Therefore the co-
variance of the position would increase largely over time.
The EKF however choses only one trajectory and therefore
decides for one side, disregarding the other!

New approaches, all of which belong to the group of
sigma-point Kalman filters, can solve this problem [2, 3].
The expectation in (6) is no longer being approximated by
means of linearisation, as is the case with the EKF, but is
formed by means of a weighted sample covariance of a set
of r representative points Aj . . . X;._; in the state space (the
time index k is omitted from now on)*:

r—1r—1
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P, = > wixy! (12)
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Py, = > wiViVl+W (13)
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r—1 —

X7 = > wlX, y=) w14
=0 i

Yi = h(Xj,u) (15)

wi;, wis and w;" are the weights of the covariance, the
Cross- covarlance and of the mean. It is then possible to
show that computing the gain matrix according to equa-
tion (10) with f’;y and f’;y from equation (11) to (15)
represents a numeric linearization of the process. This lin-
earization, however, includes now r points. The advantage
of this method is that the approximation is precise at least

up to the second order of the Taylor series (in contrast to

21t has been claimed in the literature ([3, 5]) that both the UKF and the
CDKEF (see below) can be formulated like the weighted statistical linear
regression. However, this does not apply to CDKF if one uses the regres-
sion given in [3]. Therefore here, a more general form has been derived
which is valid for both filters. This form will be analyzed in detail in
upcoming publications.



the first-order EKF approximation). Moreover, the SPKF
avoids the analytic computation of the partial derivatives
g—:, g—;‘ needed for the EKF. If the filter equations are for-
mulated with a root form [4] (analogue to the square-root
form of the EKF), the algorithms are of the same order of
magnitude as the EKF but still are slower in practice be-
cause the system and measurement equations (1) and (2)
have to be computed for every sigma point which usually
takes longer than one single computation of these equations
together with the computation of the derivatives.

The various implementations of the sigma-point filter
differ in the choice of sigma points A;, as well as in the
weights wi;, wis and w;". The equations for the central
difference Kalman filter (CDKF) are given here as an ex-
ample [6]°:

Xy = %
X = X+h(VP)mi (i=1...n)
Xiew = X—h(VP)imi (i=1...n)
h? —n 1.
wy' = e Wi =gm (0>0)
. W2 -1
’LUOO - h4 n
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1-h2
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1 .
1 .. ..
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All other weights w§; and w7} are zero. The CDKF is based
on Stirling’s interpolation formula which is used to approx-
imate the system function unlike the EKF which uses a
first-order Taylor series. The root of the positive definite
matrix P can be computed using the Cholesky decomposi-
tion. h is a scaling parameter determining the spread of the
sigma-points around the mean. It can be selected depend-
ing on the distribution of the state; h = V3 gives the best
approximation in the Taylor sense for the normal distribu-
tion. The CDKF has been chosen for the calibration task
described below, because it features a slightly better pre-
cision than other SPKF variants [3]. Additionally, A is its
only parameter which is why it is easier to tune the CDKF
than, for instance, the UKF [4] which has three rather non-
intuitive tuning parameters.

3The weights given here cannot be found in [3, 6] because there, a
different form is used, see footnote 2. Both formulations can be shown to
be equivalent.

3 Parameter estimation with rare updates

The EKF has since long been used not only as a state es-
timator but also as a parameter estimator since parameters
can be interpreted as states that are constant over time. If
the system and measurement functions f and h depend on
a set of parameters &, the system (1)—(2) can be written as

€1 = & +nj (16)
Xpr1 = f(xp,ug, &, k) +nj a7n
yi = h(xg,ug, &, k) +np. (18)

n? is a small noisy input which can be interpreted as a
change rate of the parameters. This offers two approaches:
first, the state vector x could be augmented with the param-
eters & which is the standard approach and has been done
e.g. in [7, 8]. However, if a SPKF is used, this approach
demands 2(n + p) + 1 sigma points although only p pa-
rameters have to be estimated, i.e. the computing time will
increase.

Here, a second approach is used. If the states are
directly measured, i.e. h(xy,ug,&;,k) = x; and n™ is
small such that

. At
E{ln;cn-l-l |} < E{lf(xk+7 ug, gk ) k)_f(xka ug, £7 k)_nlscl}
19)
holds, one can reformulate the parameter estimation prob-
lem:

€1 = &p+n} 20)
Y41 = f(}’k_n;cnyukanlscagkak) 2

This leads to the following filter equations:

/\+ A —

€1 = &r + Kilyrsr — f(yr,up, &, k)] (22)

A — ,\+ R .~

Err1 = & XZFH =Xpp1 = Ye+1 (23)
Ki = Pg,(P,)" (24)

Since £ now plays the role of the state in the filter model,
ng and PE_E/ + correspond to P;y and P~/ respectively.
But in which cases does (19) hold? Usually, f is a discrete-
time approximation of a differential equation which de-
scribes the physical laws the state is subject to, i.e.

tret1
f(xp,ug, &, k) & xp +/t x(x,u,&,t)dt.  (25)
k

(here, the variables without index & are the continuous-time
correspondents of the discrete-time variables). Now imag-
ine a system where measurements of the input u are taken
at much higher frequencies than of the output y, i.e. up-
dates are rare compared to the underlying sample time.
One can see that generally, the longer the time interval
tr+1 — tx is, the more inaccuarate the numerical integra-
tion will be and will at last fulfill condition (19). Therefore
in the case of rare updates, it is possible to estimate the pa-
rameters of a dynamical system without having to estimate
the states as well.



If such an approach is chosen, an EKF can no longer
be applied. This is because the derivative of f in eq.

(25) needed to calculate f’g&/ *and K is actually Of /0€
and depends highly on the inputs u. Since the trajecto-
ries of u are usually not known beforehand and u is only
discretely measured, the computation of these derivatives
would have to be performed numerically requiring a great
effort which seems not to be beneficial. Unlike this, if
one uses the SPKEF, the derivatives are calculated inherently
which means no changes to the algorithm have to be devel-
oped.

Remember that the system noise n® has been assumed
to be additive. This means that in the new filter, it will
be part of the measurement noise n™ while the new sys-
tem noise is nP. Thus the matrix W has to be replaced by
W +Z and Z in (11) is replaced by Z¢, a covariance ma-
trix which influences the parameter change rate and which
can be used as a tuning parameter. If however, n® is non-
additive, a strict adherence to the SPKF formalism would
require the state £ to be augmented by the noise[6]. This
however is not feasible since M - n dimensions would have
to be added where M is the number of time steps between
two updates. This would largely increase the state vector
and thus the number of sigma-points. Therefore, if non-
additive system noise is to be considered, one can only re-
sort to applying the ’additive’ filter and using Z as another
tuning parameter.

4 Example: calibration of an inertial mea-
surement unit

In this section, an application of the above described SPKF
parameter estimator is outlined. It consists of the calibra-
tion of an inertial measurement unit (IMU). Such units are
applied e.g. to the navigation of airplanes, submarines and
other vehicles. They need at least six sensors to solve the
navigation equations: three acceleration sensors as well as
three rotation rate sensors. Since the sensors of modern
IMUs are fixed to the moving object (so-called strapdown
technology) the measured accelerations have to be con-
verted from the body coordinate system (index b) into the
so-called navigation system (index V) with axes pointing
to North, East and downwards. This is achieved by pre-
multiplying the accelerations with the rotation matrix RY;.
Because the object rotates with the rates wj, R4 changes
over time:

Ry = Ry (26)

€, is a skew symmetric matrix, generated by wy. Taking
gravity and effects resulting from the earth’s rotation rate
eV into account, the measured rotation rates w; and accel-
erations a; lead to the following equations which display
the object’s velocity v2¥ over ground [9]:

vl = Rbia’ - (2eV +wly) x vV +gV @)
N VE UN £

= - —upt 28
Wen [R0+h’ Ro+h " anRo+h]( )

L is the latitude, h the height above sea level and Ry is the
reference radius of the earth. vy and vg denote the north-
ern and eastern component of v¥. g/ is the local vector of
gravity which also includes the centripetal force of the earth
rotation. wl describes the rotation of the navigation sys-
tem compared to a system placed in the center of the earth.
In stationary applications such as the IMU calibration pro-
cedure below, it is approx. zero. Therefore the state of the
navigation system is given by x = (R4, p™v, vY) (where
pY is the position), it’s inputs u are accelerations and rates.
f is given by
R',’V’k + Lt:H R4 (7)dr
(€)= | oY + [0 (VI + J v ()ar Yar
i+ i e (n)dr

(29)
The integrations have to be carried out numerically. Usu-
ally, instead of RY;, an equivalent quaternion is used [9].
The system noise n® is found in the inputs which cannot be
exactly measured, i.e. U = U¢yye + n°.

In [10] a parametric model for the sensors has been
developed. It includes error sources such as non-linearities
of a single sensor, cross-correlation between the sensors
and errors induced by the excentricity of the accelerom-
eters. The parameters of the sensors are collected in the
vector €. In this application, at least 33 different IMU pa-
rameters had to be calibrated (more are possible, depending
on the order of the sensor models). In addition to that, the
positioning errors of the robot used for the calibration can
(and should) be estimated. They are also treated as system
parameters.

Usually, rate tables are used to excite the IMU’s sen-
sors with defined stationary rates and accelerations (by
making use of the gravity) during the calibration process.
This method requires special, expensive equipment. In this
work, a new calibration method is proposed which uses a
standard industrial robot to move the IMU. Update mea-
surements for the SPKF are collected from the robot’s con-
troller.

This is a typical example for the above described rare-
update filter. Though the robot theoretically could trace
the end effector’s pose with frequencies close to the IMU’s
data acquisition rate, standard industrial robots have a low
absolute dynamic accuracy and show errors of 10 mm and
more. However, during standstill, the accuracy is on the
order of 1 mm and moreover, its repeatability can be ten
times better. Therefore, updates are taken only when the
robot stands still.

The calibration process is schematically depicted in
Fig. 1. In a first step, all measurements are taken, i.e. the
robot moves the IMU along N,,, successive measurement
paths. At the end of each path, the robot waits a short while
to allow for vibrations to settle, then it sends its actual po-
sition to the calibration computer. After all measurements
have been collected, the SPKF is run, i.e. a set of 2N + 1
sigma points is calculated and the same number of navi-
gation algorithms is started in the pose that was recorded
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Figure 1. Calibration workflow.

from the robot’s control. A SPKF update is performed with
the new standstill pose, a prediction step follows immedi-
ately. Then, a new set of sigma points can be calculated
and the navigation algorithms are initialized for the follow-
ing path. The algorithm stops if all paths have been used
by the SPKF or if the accuracy of the estimated parameters
is good enough which can be seen either from the param-
eters’ standard deviation over the last few updates or from
the error between the end position of the navigation algo-
rithm based on sigma point Xj (the current best estimate of
the parameters) and the pose where the robot’s controller
assumes the IMU to be.

Equation (29) displays both the disadvantages and the
advantages of the application of the SPKF in comparison
to the EKF. Since the measurement equation (21) must be
computed for the total of 2N¢ + 1 sigma points, the en-
tire navigation computation has to be executed that many
times. This is also the reason why the proposed calibra-
tion method usually would not be used online. If, on the
other hand, an EKF was used, the navigation computation
would have to be executed just once: for the current best
estimate of the parameters. However, as outlined above,
the EKF would have to include orientation, position and
velocity into the esitmation because the derivative Of /O€
cannot be computed, so it is not possible to compare the
EKEF directly to the SPKF. Also, the EKF is known to work
well only on systems which are almost linear between two
updates but here there are large time periods in between
the Kalman updates, (tx+1 — tr covers a time of several
seconds), whereas the robot performs, as the case may be,
very complex trajectories — thus near-linearity is not to be
expected.

X-position in m

-4 = updates ]

20 30 40 50 60
time 1in s

Figure 2. x-coordinate estimation of the IMU based on 10
different sigma points.

5 Experimental results

The above calibration algorithm has been implemented and
tested on a high-precision IMU with servo accelerometers
from AlliedSignal and ring-laser gyros from Honeywell.
The IMU was moved for some 12 minutes by a KUKA
industrial robot. Acceleration and rate data was collected
with sample rates ranging from 100 Hz to 400 Hz. The dif-
ferent sampling periods did not have a noticeable influence
on the calibration results. The robot moved the IMU along
54 paths of 6-20s duration. Three different update poses
were used. The polynomial correction of the sensor data
was calculated up to order N, = 1, i.e. biases and scaling
factors were estimated.

Figure 2 depicts the parallel computation of the navi-
gation algorithms. It shows the estimated trajectory of the
coordinate z of the IMU during the movement of the robot
(only four paths can be seen here whilst the whole calibra-
tion process consists of 54 paths). The trajectories of 10
different sigma points are plotted (in fact, there are more
than 70 sigma points). Note that the true path of the robot
is not known (if it were, the updates wouldn’t be rare!).
At each update point, the trajectories are being reset to the
pose delivered by the robot’s controller, see eq. (23). Be-
cause of the different sensor parameters which are deter-
mined by the sigma points, the trajectories drift apart over
the course of time. It is obvious that at the end of a path,
the error induced by wrong parameters is much larger (at
first in the range of meters) than the accuracy of the robot
used for updates (in the range of millimeters), i.e. condition
(19) holds. As can be seen clearly, the estimated trajecto-
ries converge and the position error in the update point gets
smaller as the paramterer estimates improve with every up-
date step.

In Fig. 3, the results of the accelerometer scaling fac-
tor estimation can be seen. The factors converge but it takes
about 150 iterations until they reach the steady state. Since



only 54 different paths were measured, the calibration al-
gorithm had been run on the same measurements multiple
times to have more iterations.

The convergence behavior of the calibration algo-
rithm shows a clear dependence on the choice of the SPKF
matrices P¢¢o (initial parameter uncertainty), Z, (parame-
ter change rate) and Z (noise induced during the calcula-
tion of f). While P¢¢q is mostly known from the sensor
specifications, Z¢ is a parameter which can be used to tune
the filter. Very small values of Z¢ were found to give the
best convergence behavior in this application but it is to be
expected that in applications where the parameters change
noticably over time, higher values for this matrix should be
used.

The choice of Z is more sophisticated. As has been
outlined above, Z has to contain not only the uncertainty
of the measurement (i.e. the robot’s pose repeatability) but
also errors that result from noisy accelerometer and gyro
measurements. To complicate things further, these noisy
measurements are integrated over a long time and along an
unknown path. To be exact, one would have to incorpo-
rate numerical errors of the navigation algorithms as well.
Therefore, as stated earlier, Z was viewed as an additional
tuning parameter. Indeed, it proved that the choice of Z
largely influences the performance of the algorithms. Up
to this time, a heuristical approach has been chosen to tune
Z, but research focusses on methods to obtain a more pre-
cise value of this covariance matrix.

The experiments showed that the proposed SPKF es-
timation algorithm is capable in principle of calibrating an
IMU’s parameters. However, the performance of the algo-
rithm is expected to increase largely if more information
is provided about the robot’s path. Although rather inac-
curate, the robot’s own measurements (12 ms sampling pe-
riod) could be used as update information during the first
few paths. As soon as the 2N¢ + 1 navigation algorithms’
paths are close enough to the robot’s measurements, one
proceeds with the rare-update filtering. This has to be done
because the robot’s path measurements errors are mostly
deterministic (but unknown) and not zero-mean — the ap-
plication of a Kalman type filter requires zero-mean noise.
With thus improved algorithms, it seems promising that
high-precision IMUs can be calibrated with the required
accuracy in the future by using an SPKF.

6 Conclusion

This paper has shown how a sigma-point Kalman filter can
be used for parameter estimation. It has been pointed out
that if update measurements are rare compared with the fre-
quency of the inputs, this filter allows the estimaton of pa-
rameters without having to estimate the system’s states as
well. Therefore, the filter’s dimension and computing time
are reduced. This approach would not be possible with an
extended Kalman filter.

Current research focusses on the convergence behav-
ior of the filters. Therefore, variable filter parameters, such
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Figure 3. Estimated scaling factors.

as Z, Z¢ Pgeo and h are investigated. Particularly the
choice of a suitable matrix Z requires that not only the
robot’s repeatability is known, but also the integration er-
rors which may result, for instance, from the random walk
of the sensors. On the other hand, new filter structures are
being developed, e.g. a filter which does not generate the
sigma points using a Cholesky decomposition, but with a
stochastic algorithm in order to avoid a periodic behavior
of the estimated parameters in a quasi-stationary state.

The calibration of an inertial measurement unit will
be investigated in more detail. The combination of differ-
ent filter structures, including the here presented, promises
faster and more accurate calibration results.
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