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ABSTRACT
Extended Kalman filters have long been applied to sen-
sor fusion in navigation tasks. They can be used to es-
timate both the states and the parameters of the dynamic
system. In recent years, so-called sigma-point Kalman fil-
ters with an improved estimation accuracy compared to ex-
tended Kalman filters have emerged. This work shows how
these filters can be applied to calibrate an inertial measure-
ment unit used for unaided navigation. Two different filter
structures are proposed: a forward filter models the whole
navigation process (states and parameters) while an inverse
filter performs only a parameter estimation.
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1 Introduction

The parameter estimation of complex nonlinear dynamical
systems has long been an area of interest for researchers. If
both states and parameters are to be estimated while the
measurements are exposed to noise, recursive stochastic
methods lend themselves to be used. Among others, the
extended Kalman filter [1] is a popular algorithm for this
purpose. It has many applications, especially in the field of
inertial navigation.

However, extended Kalman filtering may lead to bi-
ased estimations in the presence of large nonlinearities.
New approaches, calledunscented Kalman filters(UKF)
[2], central difference Kalman filters(CDKF) [3] or – more
generically –sigma-point Kalman filters(SPKF) [4], yield
much more accurate estimations of a system’s states and/or
parameters and are even easier to implement because they
lack the need to calculate analytical derivatives.

This paper will show how the concept of sigma-point
filtering can be used to calibrate an inertial measurement
unit (IMU), consisting of three accelerometers and three
gyroscopes, measuring turn rates. A standard industrial
robot moves the IMU in order to generate reference ac-
celerations and rates. However, both the IMU’s measure-
ments and the robot’s poses, which are used in the calibra-
tion process, are subject to measurement noise. Applying
Kalman-type filters allows to take into account the stochas-
tic properties of the noise in order to generate parameter
(and state) estimates.

†Inertial sensor calibration and robotics are research topics of the LPA.
The author would like to thank Prof. H. Janocha, head of the LPA, for his
scientific and financial support of this work.

To the author’s knowledge, the work presented here
and its predecessor [5] describe some of the first appli-
cations of sigma-point filters to complex navigation sys-
tems based on real measurements and not only on simu-
lated data.

The paper is structured as follows: First an overview
is given of the whole calibration process including a mathe-
matical model of the IMU. Section 3 follows with a brief
introduction into sigma-point filter theory. In section 4,
two possible formulations of the navigation SPFK are in-
troduced, one integrating the IMU’s measurements and one
differentiating the robot’s pose data. Section 5 reviews the
experimental results and compares both approaches. Con-
clusions and a prospect for further research complete the
paper.

2 The IMU calibration process

2.1 Inertial navigation

Inertial measurement units are used to compute the pose
(position and orientation) of a moving object by tak-
ing measurements of the real ratesω and accelerations
a (throughout the paper, vectors and matrices are bold-
typed). In modern strapdown systems,ω anda are mea-
sured in a coordinate frame fixed to the object. Therefore,
the accelerations have to be transformed into an earth-fixed
frame. Since the transformation matrix depends on the ro-
tation rates, the system is nonlinear. There are special inte-
gration algorithms for the navigation equations which can
be found in [6].

If an IMU shall be used forunaidednavigation, i.e.
no external information such as GPS data is provided, it
must be assured that the sensors are very accurate. In the
past, various calibration strategies for IMUs have been de-
veloped [7, 8, 9], but they suffer either from the need for
expensive hardware (precision rotating tables) or from their
limitation to low-cost units. In this work, a new approach
shall be followed where comparingly low-cost hardware –
an ordinary industrial robot – is used in combination with
modern algorithms to calibrate the IMU.

2.2 The IMU’s calibration parameters

Within this work, it is assumed that both the accelerom-
eters and the rate sensors have a well-defined charac-
teristic, which can be modeled to the needed accuracy



by a polynomial of the orderNp a/ω with coefficients1

ka/ω,x/y/z,i (i = 0 . . .Np a/ω). These coefficients may
be temperature-dependent. Ideally, all sensors should
be aligned exactly parallel to the coordinate axes of the
body frame, however, production tolerances result in a
nonorthogonal mounting. This can be compensated with
a 3 × 3-dimensional cross-coupling matrixCa/ω. If we
fix ka/ω,x/y/z,1 = 1, these matrices are not subject to con-
straints, and therefore each of these matrices contains nine
independent parameters that are to be estimated.

It is impossible to mount all three acceleration sen-
sors at the origin of the body frame. As the sensors ro-
tate around the origin, centripetal and tangential acceler-
ations will be measured by the accelerometers. There-
fore, an excentricity correction vector has to be introduced,
whereux/y/z describes the displacement of thex/y/z-
acceleration sensor. For the accelerometers, the full sensor
model is thus

a = Ca













∑Npa

i=0 ka,x,ia
′
x

i

∑Npa

i=0 ka,y,ia
′
y

i

∑Npa

i=0 ka,z,ia
′
z
i






−





(C−1
a )1,1:3(ω × ω × ux + ω̇ × ux)

(C−1
a )2,1:3(ω × ω × uy + ω̇ × uy)

(C−1
a )3,1:3(ω × ω × uz + ω̇ × uz)







(1)

wherea′
x/y/z are the measured accelerations in thex, y,

andz directions whilea andω are the real accelerations
and rates, respectively [8]. The model of the rate sensors is
similar but usually does not need an excentricity correction.

2.3 The robot-based calibration process

Estimating an IMU’s parameters requires an appropriate set
of input data to the sensors to be generated, i.e. the IMU
must be exposed to rates and accelerations. Most calibra-
tion methods make use of the fact that the accelerometers
always sense gravity and therefore the IMU is positioned
in different orientations to the gravity vector. The absolute
value of the measured acceleration vector [8, 9] or all vec-
tor components [7, 8] are compared to the gravity vector.
To estimate the rate sensors’ parameters, however, one has
to generate reference rates artificially, because the ’natural’
reference rate related to the earth’s rotation is not large
enough to allow for an accurate calibration. Rate tables
are used for this purpose; only recently, a method has been
proposed to use a robot for this static calibration [8].

While the rate table based methods have been estab-
lished since long, they suffer from being rather expensive.
Therefore here, a new calibration method will be presented.
The needed hardware is shown schematically in Fig. 1: the
robot moves the IMU and log’s its poses while the IMU
sends the raw accelerations and rates to a calibration com-
puter that performs all calculations. Now there are two data

1In the following, the indexa stands for accelerometer related para-
meters,ω for rate-sensor related parameters.

trace file

g ε
latitude

(local constants)

calibration computer

p,q

83.33 Hz

IMU

KUKA
KR 125

a

ω

400 Hz

movement

commands

serial

network

T
C

P
/I

P

Figure 1. Hardware Configuration of the Calibration.

sets with different characteristics: the IMU’s measurements
provide accurate short-time but poor long-time pose infor-
mation while the robot’s trace data guarantees a long-time
stability.

The incorporation of redundant measurements into
one optimized estimation of states or parameters has since
long been a field for extended Kalman filtering. In many
navigation systems, Kalman filters are used to combine in-
ertial measurements with other sensors like GPS or odome-
ters. However, the convergence of Kalman filters is diffi-
cult to prove, especially if parameters and states shall be
estimated at the same time. This becomes more and more
an issue if update information is comparingly rare as is the
case with GPS measurements. Therefore in real-world sys-
tems no more than a few parameters (such as accelerometer
biases) are estimated during the navigation calculation.

In this paper however, it will be shown that it is possi-
ble to perform an IMU’s calibration based on stochastic fil-
tering. A new kind of stochastic filter, named sigma-point
Kalman filter (SPKF), is used because it proved to be more
accurate and easier to implement and control than conven-
tional extended Kalman filters.

3 Sigma-point Kalman filters: theory review

In this section, the SPKF theory shall be reviewed in brief.
Good overviews can be found in [2, 4]. The dynamic sys-
tem treated in this paper can be written as a first-order
Markov system with the following equations.

ξk+1 = ξk + n
p

k (2)

x′
k+1 = f ′(x′

k, ξk,uk, k) + n′sk (3)

yk = g(x′
k, ξk,uk, k) + nm

k (4)

x′, u andy are vectorial state, input and output variables,
ξ is a vector composed of the system’s parameters,k is
the current sample index,n′s, nm, andnp stand for zero-
mean system, measurement, and parameter noise, andf ′

andg symbolize the (possibly non-linear) system function



and the measurement function of the process, respectively.
The state vectorx′ is of dimensionn′, the output is of di-
mensionm. n′sk, nm

k , n
p

k, ξk, andx′
k are stochastically

independent.p parameters are estimated.np can be used
to control the convergence behaviour of the parameters [5].

By using this formulation, one can introduce an aug-
mented state2 x = (ξT ,x′T )T with dimensionn =
n′ + p. Then, the first two equations can be com-
bined to the following equation with the new system func-
tion f(xk,uk, k) = (ξT

k , f ′T (x′
k, ξk,uk, k))T andns =

(npT ,n′sT )T .

xk+1 = f(xk,uk, k) + ns
k (5)

The most widely used estimator for nonlinear systems is the
extended Kalman filter (EKF). It consists of two steps: an
a-priori estimation̂x−

k before the measurementyk has been
taken and an a-posteriori estimationx̂+

k with knowledge of
yk. This method results in the following equations where
E{·} stands for the expectation3.

x̂−
k = f(x̂+

k−1,uk−1, k − 1)

≈ E{xk|yk−1,yk−2, . . .} (6)

x̂+
k = x̂−

k + Kk[yk − ŷk]

≈ E{xk|yk,yk−1, . . .} (7)

ŷk = g(x̂−
k ,uk, k)

≈ E{yk|yk−1,yk−2, . . .} (8)

The Kalman gain matrixKk is computed using the matrix
P̂−

k , an estimation of the state estimation error’s covariance

E{(x̂k − xk)(x̂k − xk)T }. P̂
−/+

k are computed by lin-
earizing the system equations around the current estimate
x̂+

k−1/x̂
−
k :

P̂−
k+1 =

∂f

∂x
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k

( ∂f

∂x
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]
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Kk = P̂−
k
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)T [∂g
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k

(∂g
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)T
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(11)

whereZk = E{ns
kn

sT
k }, Wk = E{nm

k nmT
k }, andI is the

identity matrix. Taking a closer look at (11), one can see
that this is nothing but a linear approximation of

Kk = P−
xy,k(P−

yy,k)−1, (12)

with P−
yy denoting the covariance matrix of theinnovation

(yk − ŷk) andP−
xy the covariance matrix between the a-

priori state estimate error and the innovation. (6) and (9) are
referred to as the Kalman prediction step, and (7), (8), (10),
and (11) as the Kalman update step. For a more detailed
discussion, see for example [1].

2If unambiguous, the indexk is omitted from now on.
3Throughout this paper, variables with a hat (·̂) stand for estimated val-

ues while non-hatted variables represent the true quantities. A ’-’ denotes
a-priori estimates, a ’+’ a-posteriori estimates.

Since the system equations are linearized around the
current estimate, the stochastic distribution of the EKF’s
state is disregarded. Often, this leads to a biased esti-
mate and a significant underestimation of the state’s co-
variance matrix, the latter being a common cause of fil-
ter divergence. New approaches, all of which belong to the
group of sigma-point Kalman filters, can solve this problem
[2, 4]. The expectations are no longer being approximated
by means of analytical linearization, as is the case with the
EKF, but are formed by means of a weighted sample co-
variance of a set ofr representative pointsX0 . . .Xr−1 in
the state space [5]:

Xi = f(X+
i ,u), Yi = g(X−

i ,u) (13)

P̂− =

r−1
∑

i=0

r−1
∑

j=0

wc
ijXiX T

j + Z (14)

P̂−
xy =

r−1
∑

i=0

r−1
∑

j=0

wcc
ij X−

i YT
j (15)

P̂−
yy =
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i=0

r−1
∑

j=0

wc
ijYiYT

j + W (16)

x̂− =

r−1
∑

i=0

wm
i Xi , ŷ =

r−1
∑

i=0

wm
i Yi (17)

wc
ij , wcc

ij , andwm
i are the weights of the covariance, the

cross-covariance and of the mean. It is then possible to
show that computing the gain matrix according to (12)
with P̂−

yy andP̂−
xy from (13) to (17) represents a numeric

linearization of the process. This linearization includesr
points unlike the EKF, which uses only the current best es-
timate for linearization. The advantage of this method is
that under some assumptions, the approximation is precise
at least up to the third order of the Taylor series (in con-
trast to the first-order EKF approximation). Moreover, the
SPKF avoids the analytic computation of the partial deriv-
atives ∂f

∂x
, ∂g

∂x
needed for the EKF.

The various implementations of the sigma-point filter
differ in the choice of sigma pointsXi, as well as in the
weightswc

ij , wcc
ij andwm

i . The equations for thecentral
difference Kalman filter(CDKF) are given here as an ex-
ample ([3, 5]).

X+/−
0 = x̂+/− (18)

X+/−
i = x̂+/− + h(

√

P̂+/−)1:n,i, i = 1 . . . n(19)

X+/−
i+n = x̂+/− − h(

√

P̂+/−)1:n,i, i = 1 . . . n(20)

wm
0 =

h2 − n

h2
, wm

i =
1

2h2
(i > 0) (21)

wc
00 =

h2 − 1

h4
n (22)

wc
ii =

2h2 − 1

4h4
(i = 1 . . . 2n) (23)



wc
0i = wc

i0 =
1 − h2

2h4
(i = 1 . . . n) (24)

wc
i,i+n = wc

i+n,i = − 1

4h4
(i = 1 . . . n) (25)

wcc
ii = wcc

0,i+n =
1

2h2
(i = 1 . . . n) (26)

wcc
i,i+n = wcc

0,i = − 1

2h2
(i = 1 . . . n) (27)

All other weightswc
ij andwcc

ij are zero. The root of the

positive definite matriceŝP+/− can be computed using the
Cholesky decomposition.h is a scaling parameter deter-
mining the spread of the sigma-points around the mean. It
can be selected depending on the distribution of the state;
h =

√
3 gives the best mean and covariance approxima-

tion in the Taylor sense for the normal distribution. The
CDKF has been chosen for the calibration task described
below, because it features a slightly better precision than
other SPKF variants [4]. Additionally,h is its only para-
meter which is why the CDKF is easier to tune than, for
instance, the UKF which has three rather non-intuitive tun-
ing parameters.

4 Forward and inverse navigation filtering

This section will explain how an SPKF can be used to
calibrate an IMU. There exist two conceivable approaches
to implement a Kalman-like filter: first, accelerations and
rates can be integrated as is done in usual navigation sys-
tems; thus, the update is performed on the basis of the pose
data. This method is called hereforward navigation filter.
As a second approach, the robot’s pose data can be differ-
entiated such that the measured accelerations and rates can
be compared to computed ones. This is called aninverse
navigation filter. Both approaches will be described now
in more detail.

4.1 Forward navigation filter

The upper part of Fig. 2 shows the signal flow of the for-
ward navigation filter. First, the raw measurements run
through the sensor model blocksPFa andPFω described
in section 2.2. These blocks are the main interest of the
calibration procedure. According to the navigation algo-
rithms, rates and accelerations are then used to compute
position and orientation (represented as quaternions, see
[6]). Therefore, the SPKF state consists of the IMU’s pa-
rameters, the orientation information (expressed as a 4-
dimensional quaternionqIMU, see [6]), the positionpIMU,
and the velocityvIMU, both given in the world frame.
Since all six sensors have superimposed noise,xaug has
p + 4 + 3 + 3 + 6 elements.

This approach is the natural way to estimate both
states and parameters of the system. It is convenient to
implement because the integration algorithms are usually
part of an IMU. Since the SPKF has no need for analytical
derivatives, it can be implemented as a black-box algorithm

which uses the functions already found on the IMU. This
also allows for a convenient separation of the sensor model
and the navigation algorithm – if different IMUs shall be
calibrated with the new approach, only the sensor model
has to be changed and there is no need to recalculate this
model’s influence on the whole system’s derivatives.

Note that the quaternion used here to represent
the orientation introduces an equality constraint because
|qIMU| = 1. Constrained estimation with SPKFs is still
a matter of research. Here, a renormalization of the quater-
nion has been done after every update which is also of-
ten been applied to Kalman filters. Experiments have also
been conducted with a 3-degrees-of-freedomunconstrained
representation of the orientation. The results showed no
significant difference to the quaternion algorithm. There-
fore here, the quaternion representation was used because
it eases the implementation of the navigation equations.

4.2 Inverse navigation filter

When using the forward navigation filter, accelerations and
rates are looked at as inputs to the system while the robot’s
controller measurements serve as updates. It is possible
to reverse this problem by using an inverse navigation fil-
ter whose signal flow is shown in the lower half of Fig.
2. In this case, the robot’s measurements are differentiated
numerically to compute the rates and accelerations which
should be measured by the IMU’s sensors. This is done in
a precomputation step and not part of the Kalman estima-
tor. The real measurements are then used as updates for the
SPKF.

While this approach diminishes largely the computing
time – computing numerical derivatives can be done much
more efficiently than integrating the navigation equations–
it introduces a new error source into the calculations: the
numerical derivatives tend to be more inaccurate than the
integrations used in the forward filter. In addition to that,
high-frequency information in the accelerations and rates
will be lost; this effect can be seen clearly if one compares
the measured accelerations with the numerically computed
ones. For the numerical differentiation, an algorithm is
used which uses five points spread symmetrically around
the current sample. This leads to a smoothing of the data
which has to be taken into account by applying an appro-
priate filter to the raw accelerations and rates, too. This
is particularly important because the acceleration sensors
show a rather large noise level and therefore unsmoothed
update measurements would lead to very small innovations
in the filter because the relevant parts ofW exceed those
of P−

xy by far (cf. (12) and (16)).
The inverse filter opens further possibilities to im-

prove the results: since the numerical derivatives are com-
puted before the filter is run, the parameter estimation is no
longer a dynamical system but rather a static map between
the inputs (robot’s accelerations, velocities and rates) and
outputs (IMU’s measurements). Therefore, one can store
the input-output pairs beforehand and then shuffle them be-
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Figure 2. SIGNAL FLOW OF THE IMU CALIBRATION

fore feeding them to the SPKF algorithm. This destroys any
correlation between consecutive data, the filter is driven by
inputs which resemble white noise more closely than the
real path data does, and thus persistent excitation is guar-
anteed. By using this shuffling technique, the convergence
speed of the method is improved largely as can be seen in
section 5. Note that this approach cannot be taken with the
forward filter because there, the states have to be estimated
too.

Note that the inverse filter is not applied in addition
to the forward filter but replaces it. Therefore, the filters
use either the positions or the differentiated positions as
updates, not both – using both would not provide addi-
tional information to the system and would therefore make
no sense. The basic difference between the filters lies in
the location of the updates: the forward filter uses updates
’far’ (i.e. two integrations) away from the paramters to be
calibrated while the inverse filters updates the sensor mea-
surements directly.

5 Experimental results

Experiments have been conducted on a high-end IMU orig-
inally designed at our laboratory for industrial robot cali-
bration [10]. It consists of three servo accelerometers (reso-
lution: 10−6g) and three ring-laser gyroscopes (resolution:
5 ·10−6 rad). Throughout the experiments the data acquisi-
tion rate was 400 Hz (the robot’s movements’ spectral parts
ended at about 50 Hz). The IMU was moved by a KUKA
KR125 industrial robot which is able to log its poses with
12 ms sample time. However, only the commanded poses
are logged, not the true poses, so this data is unreliable; the
resulting error is modeled as white noise.

First, the results of the forward navigation filter will
be examined. In Fig. 3, one sees the estimated gyroscope
cross couplings. After a few seconds, the parameters are
close to their true values and change much more slowly.
One can observe major changes in the parameters at about
9 s which correspond to a different kind of motion of the
robot. It is clear that here, the lack of persistent excitation
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Figure 3. Estimated Gyro Cross Couplings, Off-Diagonal
Elements (Forward Filter)

may be an issue, and therefore, one has to chose the robot
paths carefully. The estimated parameters have been found
to be accurate to the third (this accuracy has been verified
by adding known artificial errors to the sensor measure-
ments and identifying both the ’real’ errors and the addi-
tional ones).

Fig. 4 shows the estimated gyroscope cross couplings
when applying the inverse navigation filter. The solid lines
indicate the parameter estimations when using the shuf-
fling algorithm while the dashed lines are generated by the
conventional, ’ordered’ (non-shuffled) algorithm. One can
see clearly that both filters are able to estimate the para-
meters correctly. The shuffling algorithm however con-
verges faster because the input data are closer to white
noise. The same behaviour can be seen in Fig. 5 where the
estimatedx-axis accelerometer’s excentricities (i.e. the dis-
tances between the sensor and the robot’s tool center point)
are plotted. However, the accelerometer’s parameters show
a slower convergence than the gyro’s. This is mainly due to



C
w1,2

C (shuffled filter)
w1,3

C (ordered filter)
w1,3

C
w3,2

C
w2,3

C
w3,1

C
w2,1

Figure 4. Estimated Gyro Cross Couplings, Off-Diagonal
Elements (Inverse Filter). Solid lines: shuffled filter.
Dashed lines: ordered filter.

u
xx

u
yx

u
zx

Figure 5. Estimatedx-Accelerometer Excentricities (In-
verse Filter). Solid lines: shuffled filter. Dashed lines: or-
dered filter.

a much higher noise level on the accelerometer’s measure-
ments and the error that comes from the numerical differ-
entiation of the rates in order to correct the excentricities.

Since the inverse filter estimates only the parameters of
the system while the forward filter also has to estimate the
states, and because the inverse filter has a much simpler
system function, the inverse filter needs much less comput-
ing time than the forward filter while the estimation accu-
racy is on the same order. Therefore, a clear preference can
be given here for the inverse filter with data shuffling.

6 Conclusions and future works

In this paper, two approaches have been presented to esti-
mate an inertial measurement unit’s parameters when the
unit is moved by an industrial robot. Since no exact pose
information is known and additionally the IMU’s measure-
ments are noisy, a stochastic estimation scheme based on
the recently emerged sigma-point Kalman filters is em-

ployed. While robustness and speed of convergence of this
method are satisfying, there is still work to be done to im-
prove the calibration accuracy. High-end IMUs require an
accuracy< 10−5 on some parameters, which, at the mo-
ment, cannot be achieved with the proposed algorithms, so
the method is limited to lower-precision IMUs.

On a more theoretical basis, some questions regarding
SPKFs remain open. For example the estimation of (equal-
ity or inequality) constrained states is still unresolved.In
a mobile robot navigation context, for example, this would
be of interest when moving in a known world where walls
and other objects constitute regions with a probability of
zero for the IMU’s position. This topic is part of our cur-
rent research.

Another topic which is being investigated is how the
synchronization between the robot and the IMU can be es-
timated by a Kalman filter. See the companion paper [11]
for further information.
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