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ABSTRACT
Kalman filters are used when data from different sensors is
combined to obtain a suboptimal estimation of a dynamic
system’s state. In most applications, the sensor data enters
the filter in two places: some data is fed to the inputs of
the dynamic system while other data is used as reference
measurements of the system’s outputs. In order to yield the
best possible estimations, both types of sensors have to be
well synchronized, but a hardware synchronization mech-
anism is not always available. In this paper, the Kalman
filter is modified to estimate both the system’s state and the
time delay between input and output measurements. Simu-
lations show that an accurate software synchronization can
be achieved by using this method and that the state esti-
mates improve largely.
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1 Introduction

When different kinds of sensor data must be combined to
estimate the state of a discrete dynamic system which is
subject to process and measurement noise, the Kalman fil-
ter is the method of choice in a wide range of applications
[1, 2]. For example in inertial navigation, Kalman filters
and variants of it are used frequently to estimate the orien-
tation, position and velocity of the moving object by using
inertial measurements (accelerations and turn rates) on the
one hand and external reference measurements (provided
by the Global Positioning System, GPS, for example) on
the other [3, 4, 5].

One aspect which is rarely treated in the literature is
how to deal with data that is not perfectly synchronized.
However, this problem has been recognized as it arises in
wireless networks [6], driver assistance systems [7], and
inertial navigation. In some applications, a hardware syn-
chronization is provided: many GPS receivers can output
a one-pulse-per-second signal which can be used to trigger
the inertial sensors [8]. But not in all applications where
Kalman filters are used is such a hardware synchronization
possible.

Therefore, in this paper a method is introduced which
includes the latency time between two sets of measure-
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ments in the estimation process. It is assumed that a coarse
synchronization has already been done with other methods
(correlation-based for example) so that the Kalman filter
estimates latency times not greater than one sample time
of the system. Here, extended Kalman filter (EKF) ap-
proaches will be compared to methods that use so-called
sigma-point Kalman filters (SPKF), a new and more accu-
rate variant of Kalman filtering. Simulations will show that
the modified filters are able to estimate the latency very ac-
cuarately and that the estimation of the system’s states will
improve largely over the standard Kalman filter without la-
tency estimation.

The paper is structured as follows: first, a mathemati-
cal formulation of the synchronization problem is given in
section 2. Section 3 describes the newly derived Kalman
latency estimators. In section 4, simplified variants of
these filters which use interpolation techniques are pro-
posed. Simulation results are presented in section 5. The
paper closes with conclusions and an outlook.

2 Problem statement

Let xk be the state of a discrete dynamic system at the time
k with the inputsu, the outputsy, the process noisens,
the measurement noisenm, the system functionf , and the
measurement functiong. The system is sampled with the
step size∆t (vectors stand out in bold face):

xk+1 = f(xk,uk,ns
k, ∆t) (1)

yk = g(xk,nm
k ) (2)

A Kalman-like filter shall be applied to calculate an esti-
matex̂k of the system’s state at timek by using all mea-
surements ofy that are available up to the timek. When
using a standard extended Kalman filter, one needs to know
the Jacobians of the system and measurement functions
with respect to the state and the noise. These are de-
noted byA = ∂f/∂x, Bn = ∂f/∂ns, C = ∂g/∂x and
Dn = ∂f/∂nm (these matrices usually depend onk; how-
ever, for a clearer notation,k is omitted wherever this can-
not lead to misunderstandings). Then it is well known [1, 2]
that the EKF equations can be written as:

x̂−
k+1

= f(x̂+

k ,uk,0, ∆t) (3)

P̂−
k+1

= AkP̂
+

k AT
k + Bn

kZk(Bn
k)T (4)

Kk = P̂−
xy,k(P̂−

yy,k)−1

= P̂−
k CT

k

(

CkP̂
−
k CT

k + Dn
kWkD

nT
k

)−1

(5)



ŷ−
k = g(x̂−

k ,0) (6)

x̂+

k = x̂−
k + Kk

(

yk − ŷ−
k

)

(7)

P̂+

k = P̂−
k − KkCkP̂

−
k (8)

The superscript ’-’ denotes a-priori estimates (without the
knowledge of the latest measurementyk), ’+’ denotes a-
posteriori estimates (with knowledge ofyk). The process
and measurement noises are gaussian, zero-mean and white
with covariance matricesZ andW respectively1. ns

k, nm
k

andxk are independent of each other.P̂ is an estimate of
the state’s covariance matrix. (3) and (4) are referred to as
the prediction step, (5)–(8) are called update.

It can be seen that measurements of real physical
quantities enter the algorithm at two points: firstly, the
system’s inputsu are usually based on sensor data, and
secondly, the update measurementsy are provided by the
measurement equipment. Both sets of data can come from
distinct hardware devices, so one has to take care that the
measurements are well synchronized.

Let us assume that both measurements have the sam-
ple time∆t but that (the real, continuous input signal)u(t)
is sampled at the timesk∆t while y(t) is sampled at the
timesk∆t + τ with τ being a latency time. We shall fur-
ther assume that|τ | < ∆t, i.e. a coarse synchronization
has already been performed by other techniques, e.g. cor-
relation analysis.

The task to be tackled in this paper can now be for-
mulated as follows:Given is the discrete model(1), (2) of
a system and the measurementsu(k∆t),y(k∆t + τ); es-
timate the state of the system as well as the latency timeτ
using a Kalman-like filter.

Sigma-point filter variants
The term ’Kalman-like filter’ needs further explaina-

tion. In recent years, variants of the Kalman filter have
emerged which are based on the so-called sigma-point ap-
proach [9, 10, 11]. Instead of using Jacobians, they im-
plicitely compute numerical derivatives by using weighted
means and weighted covariances. There are two basic ad-
vantages of this: firstly, the filter design is eased because
there is no need to analytically derive the derivatives, and
secondly, their approximation accuracy is higher because
the system and measurement functions are evaluated at a
number of points instead of at the current best estimate
only.

The Laboratory of Process Automation’s recent re-
search has covered some topics of sigma-point Kalman fil-
tering (SPKF) [3]. Therefore, the latency estimation has
been developed both for the EKF and for the SPKF to al-
low for comparisons. Since the basic structure of the SPKF
follows the same lines as the EKF, the latency estimation
with both types of filters is very similar and is treated in
this paper.

A very brief overview over sigma-point filtering is

1Note that Gaussianess is more restrictive than necessary for Kalman
filters, but it is a sufficient condition.

given here: before each prediction and before each up-
date step, choose a set{X

+/−
i,k } of ’representative’ points

in the state space so that the mean and the covariance of
xk are reflected exactly in this set (most variants usei =
0 . . . 2n of these ’sigma-points’ wherebyn is the dimen-
sion of the state vector). Now computeXi,k+1 = f(X+

i,k)

and Yi,k = g(X−
i,k). Use weighted means of the sets

{Xi,k+1} and{Yi,k} to computex̂−
k+1

and ŷ−
k . By cal-

culating weighted covariances of these sets, you getP̂−,
P̂−

xy andP̂−
yy. Depending on the SPKF variant, different

representative points, and corresponding weights must be
chosen. For details, refer to [3, 11].

A non-additive system or measurement noise requires
special treatment in the SPKFs. Sigma-points for the noise
have to be chosen in addition to the state sigma-points.
Since the noise is usually assumed to be independent of
the state, the noise sigma points{Ni} can also be chosen
indepenently and the two sets of points can be combined:
{(Xi,0)} ∪ {(x̂,Ni)}. As you will see below, the latency
estimation needs to include ’noise states’ in the state vector
anyway, so no special care has to be taken when using the
SPKF variant of the estimators.

3 The new latency estimation filter

To derive a Kalman filter which estimates both the states
and the latency time, we make use of the explicit in-
clusion of the sample time∆t in the system function
f(xk,uk,ns

k, ∆t). We augment the original state vector by
the latencyτ and by a system noise statexns. The latter is
necessary because the system’s output is now influenced by
both the original measurement noise and the system noise
(as will be seen from (10)) – therefore the (augmented) out-
put noise is no longer independent from the system noise
which has to be modeled. Under the additional assumption
thatτ ≥ 0, we can then give an augmented system (marked
by ’′’) whose outputs are delayed compared to the inputs:

x′
k+1 =





xk+1

τk+1

xns
k+1



 =





f(xk,uk,xns
k , ∆t)

τk

ns
k



(9)

y′
k = y(k∆t + τ)

= g(f(xk,uk,xns
k , τ),nm

k ) (10)

Now, an EKF can be applied to the augmented system. It
needs to know the new Jacobians which are given by

A′ =





A 0 Bn

0 1 0

0 0 0



 , B′ =





B

0
0



 (11)

Bn ′ =
(

0 0 I
)T

, Dn′ = Dn (12)

C′ =
(

CA C∂f/∂∆t CBn
)

(13)

I is the identity matrix. Note thatC′ depends on̂τ− be-
cause the derivatives are evaluated at the current best esti-



mates. The noises and their covariances are the same as in
the standard EKF.

In the case of a linear system model,C′ and thus the
Kalman gainK′ read:

C′ = C

(

A
∂A

∂∆t
x̂− +

∂B

∂∆t
u Bn

)

(14)

K′ = P̂−′

C′T
(

C′P̂−′

C′T + DnWDnT )−1 (15)

Here,P̂−′

is the augmented state’s covariance matrix. At
time 0, the part of it reflectingτ must be initialized.∆t2

seems a reasonable choice because we assumed that|τ | <
∆t (the variance of a uniformly distributedτ would be
∆t2/12, but we are using a Gaussian model of the initial
state; however, the choice of the initial variance is not crit-
ical as long as it is not too small which is guaranteed by
setting it to∆t2).

Generally, even if the original system is linear, an ex-
tended Kalman filter has to be used because the system
function f will introduce nonlinearities in∆t almost for
sure. The derivation off with respect to∆t is the only
additional information required by the new filter (called
SyncKF from now on). In most cases, however, it is easily
available asf is usually a polynomial in∆t, being derived
from the continuous system’s transition matrix.

Since SPKFs are based on numerical derivatives,
∂f/∂∆t has not to be calculated explicitely when using
them as latency estimators (called SyncSPKF from now
on). As explained above, they are based on multiple evalua-
tions of the system and measurement equations (in order to
compute weighted means and covariances) and can there-
fore easily be implemented from (9) and (10). Looking at
(10), one sees that now in the update step, not onlyg has to
be multiply evaluated but alsof , therefore the computation
time will increase. In many systems,f is more complex
thang, thus the rise may be significant. This disadvantage
will be evaded with the SyncSPKF- presented in section
4.2.

As it can be seen from the simulation results in section
5, a very good estimation accuracy can be achieved with
both the SyncKF and the SyncSPKF if0 ≤ τ < ∆t. Let us
now take a closer look at this restriction and discuss options
how to overcome it.

4 Approximate latency estimation

Before we turn to approximate solutions of the above de-
scribed problem, we first answer the question why we had
to restrict the latency to0 ≤ τ < ∆t. The system function
f is usually a discrete-time approximation of a continuous
physical system. This function is only valid for∆t ≥ 0 be-
cause otherwise states and inputs of the previous timestep
would have to be taken as arguments off , or the output
would be non-causal. The second restriction,τ < ∆t, is
not a theoretical necessity; butτ > ∆t would impose an
unnecessary negligence of available data (inputs atk + 1)
on the system.

Both restrictions could be overcome by settingτ̂ :=
τ̂ −∆t as soon as the estimated latency is larger than a step
size (orτ̂ := ∆t − τ̂ if τ is smaller than 0), and by delay-
ing the output measurements by one step (or one ’negative’
step). This would result in a filter of variable structure.
While the stability and convergence of extended Kalman
filters cannot be proven generally (and therefore, usually
simulations serve as ’proofs’), the attempt to grant stability
of such a switching estimator would be even harder. That
is why we will now present approximations of the above
given results. These approximations have the advantage
that explicit knowledge of the dependency off on ∆t is
not required anymore. This simplifies the filter design and
additionally requires less computation time. Moreover, the
approximations are valid for unrestrictedτ (however the
first one performs better for positiveτ while the second
one shows better results forτ ≤ 0).

4.1 Approximate latency estimator forτ ≥ 0

The basic idea behind the simplifications is the following:
assuming that∆t is sufficiently small, the trajectories of the
physical system’s output can be approximated by a straight
line between the two discrete statesxk andxk+1:

y(k∆t + τ) ≈ g(xk,nm
k )+

(

g(xk+1,n
m
k+1) − g(xk,nm

k )
) τ

∆t
= g(xk,nm

k )+
(

g(f(xk,uk,ns
k, ∆t),nm

k+1) − g(xk,nm
k )
) τ

∆t
(16)

In the case of a linear system, this can be written as

y(k∆t + τ) ≈ Ckxk + (Ck+1xk+1 − Ckxk)
τ

∆t

+Dn
kn

m
k (1 −

τ

∆t
) + Dn

k+1n
m
k+1

τ

∆t

=
(

Ck + (Ck+1Ak − Ck)
τ

∆t

)

xk

+Ck+1(Bkuk + Bnns
k)

τ

∆t

+Dn
kn

m
k (1 −

τ

∆t
) + Dn

k+1n
m
k+1

τ

∆t
.

(17)
We can see that the measurement is now influenced byns

k,
nm

k , andnm
k+1. Therefore the state vector of the new sys-

tem (marked with ′′) must include all three noise terms
(where the superscript ’nmf’ stands for ’future measure-
ment noise’):

x′′
k+1 =













xk+1

τk+1

xns
k+1

xnm
k+1

xnmf
k+1













=













f(xk,uk,xns
k , ∆t)

τk

ns
k

xnmf
k

nm
k













(18)

The new Kalman matrices then are given by

A′′ =





A′ 0 0

0 0 I

0 0 0



 , Bn′′ =





Bn′ 0

0 0

0 I



 (19)



B′′ =
(

B′T 0 0
)T

C′′
k =

(

Ck + (Ck+1Ak − Ck)
τ̂−
k

∆t
,

(g(f(x̂−
k ,uk,0, ∆t),0) − g(x̂−

k , x̂nm−
k ))

1

∆t
,

Ck+1B
n
k

τ̂−

k

∆t , Dn
k(1 −

τ̂−

k

∆t ), Dn
k+1

τ̂−

k

∆t

)

.

(20)
Note that̂xns−

k = 0 andx̂nmf−
k = 0. This estimator has no

measurement noise anymore because it is part of the sys-
tem’s state. Therefore, it also has no matricesW andDn,
i.e. P̂−

yy = C′′P̂−C′′T . For0 ≤ τ ≤ ∆t, this approxima-
tion is based on a linear interpolation of the output. Ifτ is
outside this interval, (16) forms an extrapolation. Assum-
ing a smooth trajectory, the approximation will still be valid
outside (and close to) the interval, but the best results areto
be expected within the interval. In the following, this ap-
proximation is referred to as SyncKF+ . As in the original
latency estimator, replacing the EKF with an SPKF is pos-
sible by using a straightforward implementation of the aug-
mented system model (18) and the modified measurement
equation (16). This SPKF variant is called SyncSPKF+.

This first approximation needs to knowuk to com-
pute ŷk and x̂+

k . While the algorithm is still causal, data
is needed earlier than in the original Kalman filter which
must not knowuk before the computation of̂x−

k+1
. Also,

whennm
k is not stationary,W has to be known one step

in advance, but this usually bears no problem to the sys-
tem designer. With the second approximation introduced
in the following section, these minor disadvantages can be
circumvented.

4.2 Approximate latency estimator forτ ≤ 0

As already mentioned, in the original estimator as well as
in the SyncSPKF+, multiple function evaluations off and
g are required to calculatêy−. If the evaluation off takes
much more time than that ofg, one would wish to avoid
these extra computations. To do so, one can use the interpo-
lation technique described above on the interval(k − 1, k)
inspite of(k, k + 1):

y(k∆t + τ) ≈
g(f(xk−1,uk−1,n

s
k−1, ∆t),nm

k )(1 + τ
∆t )

−g(xk−1,n
m
k−1)

τ
∆t

(21)

Again, we augment the state vector as in the SycnKF+, i.e.
x′′′ = x′′. In order to computêy−

k , we have to take into
account all available information, i.e. we will usêτ−

k and

x̂+
k−1

when evaluating (21)2. P̂−′′′

xy,k is the covariance be-

tween the estimation error ofx̂−
k and the estimation error of

ŷ−
k , however the variable used in (21) isx̂+

k−1
. Therefore,

2To be precise, we calculatêy−
k

= E{g(xk ,n
m

k
)(1 + τ

∆t
) −

g(xk−1,n
m

k−1
) τ

∆t
|yk, yk−1, . . .} as the expectation of (21) condi-

tioned on the past measurements, see [2].

the computations of̂P−′′′

xy,k andP̂−′′′

yy,k have to be rewritten:

C′′′
k =

(

CkAk−1(1 +
τ̂+

k−1

∆t ) − Ck−1

τ̂+

k−1

∆t ,

(g(f(x̂+

k−1
,uk−1, x̂

ns+

k−1
, ∆t),0)

−g(x̂+

k−1
, x̂nm+

k−1
))/∆t,

CkB
n
k−1(1 +

τ̂+

k−1

∆t ), Dn
k(1 +

τ̂+

k−1

∆t ),

−Dn
k−1

τ̂+

k−1

∆t

)

P̂−′′′

xy,k = A′′
k−1P̂

+
′′′

k−1
C

′′′T
k

P̂−′′′

yy,k = C′′′
k P̂+

′′′

k−1
C′′′T

k

(22)

This formulation now states an interpolation for−∆t ≤
τ ≤ 0, which is why the new approach will be termed
SyncKF- (or SyncSPKF- resp.).

It may not be obvious at first sight why the SPKF
variant of this approximation requires less function eval-
uations than the SyncSPKF+: (21) still contains the system
function. But remember thatf(X−

i,k−1
) has already been

evaluated during the prediction step. Sinceτ̂−
k = τ̂+

k , we
can reuse these computations in the update equations and
do not have to evaluatef anew. To state it more clearly,
the full SyncSPKF- algorithm is given now. In order to
make the algorithm more readable, the′′′ superscripts have
been dropped from the state variables and the sigma-points.
diag(·) is a block-diagonal matrix built from the matrices
’ ·’.

Xi,k = f(X+
i,k−1

,uk, ∆t)

Yi,k = g(Xi,k)(1 +
τi,k

∆t
) − g(X+

i,k−1
)
τi,k

∆t

x̂−
k =

r−1
∑

i=0

wm
i Xi,k , ŷ−

k =
r−1
∑

i=0

wm
i Yi,k

P̂−
k =

r−1
∑

i=0

r−1
∑

j=0

wc
ijXi,kX

T
j,k + diag(0, 0,Zk,0,Wk)

P̂−
xy,k =

r−1
∑

i=0

r−1
∑

j=0

wcc
ij Xi,kY

T
j,k (23)

P̂−
yy,k =

r−1
∑

i=0

r−1
∑

j=0

wc
ijYi,kY

T
j,k

P̂−
k =

r−1
∑

i=0

r−1
∑

j=0

wc
ijXi,kX

T
j,k

x̂+

k = x̂−
k + P̂−

xy,k(P̂−
yy,k)−1(yk − ŷ−

k )

P̂+
k = P̂−

k − P̂−
xy,k(P̂−

yy,k)−1P̂−T
xy,k

(r is the number of sigma points; the choice ofX+
i and the

weightswm
i , wc

i andwcc
i is dependent on the SPKF variant;

see [3, 11] for details). Readers familiar with the SPKF will
note that the recalculation of sigma-points before the up-
date step cannot be found in this algorithm anymore. The
sigma-point calculation uses a Cholesky factorization and
takes most of the computing time of the algorithm – there-



−1 −0.5 0 0.5 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

τ/∆ t

(τ
∞
  

−
  τ

) 
 /∆

 t
SyncSPKF
SyncSPKF+
SyncSPKF−

Figure 1. Error of the end value (k=500) of the latency
estimation̂τk/∆t

fore one might think that the new latency estimator is actu-
ally faster than the original SPKF. Of course, this is not the
case, because the new algorithm works on an augmented
state vector!

5 Simulation results

The performance of the filters proposed here has been stud-
ied on a simulated linear second order system. Therefore,
the algorithms have been implemented in Matlab/Simulink
and tested on a springg-mass-damper system with the
spring constantc, the massm and the damping factord:

ẋ(t) =

(

0 1
− c

m − d
m

)

x(t)

+

(

0
− 1

m

)

(u(t) + ns(t)) (24)

y(t) = (1 0)x(t + τ) + nm(t + τ) (25)

The state’s first elementx1 is the position, the second ele-
mentx2 the velocity of the mass. The scalar inputu cor-
responds to an external force which is measured and dis-
turbed by a noisens. A second-order discretization of this
system results in

xk+1 =

(

−∆t2

2m

−∆t
m + d

2m2 ∆t2

)

(uk + ns
k)+

(

1 − c
2m∆t2 ∆t − d

2m∆t2

− c
m∆t + cd

2m2 ∆t2 1 − d
m∆t + ( d2

2m2 − c
2m )∆t2

)

xk

yk = (1 0)x(k∆t + τ) + nm(k∆t + τ)

The sample time of the simulation was∆t = 0, 1 s.
The latencyτ has been varied in 200 steps from−∆t to
∆t. uk has been chosen to be time discrete white noise of
variance 1; for the continuous system, the value of the input
had been held constant between two samples.ns was white
with variance10−2, nm had the variance10−5. c, m andd
were set to 1.
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Figure 2. Root of the mean squared latency estimation error
(100 runs,τ < 0).

Since the original system with latency 0 is linear, a
Kalman filter is the optimal estimator – no EKF or SPKF is
needed. As explained above,τ 6= 0 introduces nonlinear-
ities into the system so that a standard Kalman filter isn’t
applicable anymore. However, the system is still mostly
linear (the system equation is truly linear while the output
equation contains theτ -nonlinearity). Because of this, the
estimation results of the SPKF are not expected to be much
better than the ones of the EKF – the SPKF is known to
deal better with heavy nonlinearities and to show the same
performance as the KF on linear systems. Indeed the simu-
lations show that both the EKF and the SPKF variants op-
erate on the same level of estimation accuracy. Therefore,
in the plots, only the SPKF results are shown. The EKF
results can be seen in table 1.

Figure 1 shows the error̂τ−τ after 500 s for the SPKF
latency estimators. They are plotted overτ . Not surpris-
ingly, the SyncSPKF and the SyncSPKF+ show a better
performance forτ > 0 and the SyncSPKF- forτ < 0. As
already mentioned, the SyncSPKF is not defined except in
the interval0 ≤ τ ≤ ∆t but nevertheless it can be applied
outside the interval just for comparison.

To get a better impression of the performance of the
estimators, let us take a look on the separate intervals. Fig-

ure 2 shows
√

∑N
i=1

(τ̂i,k − τi)2/N , i.e. the root mean
square of the estimation error at the timek over theN =
100 estimations forτ < 0. One can see that this error de-
creases rapidly over time (note the logarithmic scale ofk).
If the ’wrong’ filters (SyncSPKF or SyncSPKF+) are used,
an estimation bias remains while for the SyncSPKF-, the
mean squared errors approaches 0.

The user of this filter is not mainly interested in
the correct estimation of the latency. It is much more
important to see whether the estimation of the original
states improves. Table 1 provides the mean squared er-
rors (for all filter runs i and all time stepsk) e� =
√

∑N
i=1

∑5000

k=1
(�̂i,k − �i,k)2/(5000N) of the states and

the latency time for all filter variants and for a standard



ex1
/10−2 ex2

/10−2 eτ/∆t

τ < 0

KF 3.8764 3.1292 –
SyncSPKF 1.5556 2.4207 0.2086
SyncKF 1.5852 2.3981 0.2135
SyncSPKF+ 1.4049 2.3085 0.1388
SyncKF+ 1.4168 2.2699 0.1424
SyncSPKF- 0.4753 1.6776 0.0246
SyncKF- 0.4764 1.6725 0.0251

τ > 0

KF 3.8662 3.2287 –
SyncSPKF 0.3003 1.4119 0.0183
SyncKF 0.3120 1.4180 0.0210
SyncSPKF+ 0.3722 1.5514 0.0254
SyncKF+ 0.3705 1.5597 0.0252
SyncSPKF- 1.2668 2.2949 0.1423
SyncKF- 1.2742 2.2729 0.1447

Table 1. Mean squared errors of the states and the latency
estimation.

Kalman filter without latency estimation. One can see
clearly that all the latency estimators’ performances are far
better than that of the standard KF and that the position es-
timation improves by up to the factor 10 when the correct
filter is used.

The very best results are obtained when the SyncKF
or the SyncSPKF are used and0 ≤ τ ≤ ∆t. This is due
to the fact that here, an exact model of the latency is used
while all other variants use approximations. However, on
can see that in this interval, also the SyncKF+ and the Sync-
SPKF+ perform very good. These two variants have also
the advantage that their estimation errors forτ < 0 are bet-
ter than those of the SyncKF/SyncSPKF because the latter
are not defined on this interval. As predicted, the ’-’ vari-
ants perform better for negativeτ .

The difference between the KF and the SPKF variants
is not very large and the results don’t allow to draw clear
conclusions here. As mentioned above, the SPKF variants
are expected to perform better on models with stronger
nonlinearities (the original system here is linear, only the
latency estimation introduces nonlinearities).

These results have been confirmed with different
choices ofc, m andd as well as different noise levels. The
performance gain varies but the research has shown that the
use of the latency estimators is always worth an examiation
if exact synchronization of input and output data cannot be
guaranteed.

6 Conclusions

In this paper, we have dealed with the problem of state es-
timation when using two sets of data that are not perfectly
synchronized. It has been shown how an extended Kalman
filter (or, alternatively, a so-called sigma-point Kalman fil-
ter) can be modified to estimate both the states of the orig-

inal system and the latency between the input and output
data of the system. Using these filters, the estimation ac-
curacy can be improved considerably because the inherent
modeling error (neglecting the latency) is removed. Filters
have been developed for positive and negative latencies.
While both filters can be also applied when the latency has
a different sign, their performance decreases (however, itis
still better than that of an estimator neglecting the latency).

Current research focuses on applying the filters to
more complex, nonlinear system models like the calibra-
tion filter for inertial measurement systems [3, 12]. In this
system, perfect synchronization is very difficult to obtain
because the inertial measurement system provides the in-
put data (acceleration and rate) while an industrial robot
which has no real-time data interface provides position in-
formation.
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