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Abstract 
This paper is devoted to the infinite-dimensional control design for a composite piezoelectric trimorph cantilever 
with complex hysteresis nonlinearities and dynamic creep processes. The control concept being proposed 
comprises a flatness-based trajectory planning in combination with a passivity-based controller which 
guarantees the stability of the resulting closed-loop error system. It is well known that at higher electric field 
strengths the polarization of the piezoelectric material saturates and significant complex hysteretic nonlinearities 
and dynamic creep effects appear. The mathematical model of the piezoelectric cantilever is approximated in 
form of a Hammerstein-like model with the hysteretic nonlinearity and the creep dynamic at the input connected 
in series with a linear infinite-dimensional beam model. The difference principle realized in the trimorph 
configuration of the piezoelectric bender leads to a special symmetry property of the resulting input nonlinearity 
and thus admits the application of the Prandtl-Ishlinskii theory for the systematic calculation of an inverse 
operator for compensating the hysteresis and creep effects. Measurement results on a commercially available 
serial trimorph bender shows the feasibility of the proposed control strategy, in particular for the case of large 
displacements.    
 
Introduction 
 
Piezoelectric Trimorph-bending actuators consist of 
a substrate of metal or carbon fibre and two 
metalised piezoceramic films [1]. In the case of a 
serial trimorph configuration as shown in Fig. 1 the 
inner electrodes have constant potential (normally 
ground). The outer electrodes are driven by the 
positive control voltages V1(t) = V0 + V(t) and V2(t) 
= V0 − V(t) with the constant offset voltage V0 which 
determines the operating point of the piezoelectric 
layers. The resulting bending moment at the tip of 
the cantilever due to the control voltages produces a 
displacement u(t,x) of the beam. For the sake of 
convenience the tip position as the control variable 
will be subsequently denoted by s(t) = u(t,L). 
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Fig. 1: Piezoelectric bender in serial trimorph configuration 

 
Piezoelectric beams are described by partial 

differential equations and thus are members of the 
class of infinite-dimensional systems. It is well 
known that a controller designed on the basis of a 
finite approximation of the infinite-dimensional 
model may cause spill-over effects in the closed-
loop system. This is why, we will henceforth focus 
on control strategies which are directly based on the 
infinite-dimensional model. In recent years there 

have been some significant advances in extending 
the concepts of differential flatness and passivity-
based control to the infinite-dimensional case. For 
applications with large displacements the full range 
of input voltage being available has to be used. For 
high electric field strengths it is well known that the 
piezoelectric material shows significant hysteretic 
and creep behaviour. Furthermore, good progress 
was made in the modelling and compensation of 
simultaneously occurring hysteresis and creep 
effects in piezoelectric layers. All these results can 
be applied in a beneficial way to the piezoelectric 
bender under consideration. In the following we will 
use an approximation in form of a Hammerstein-like 
model with the ferroelectric hysteretic nonlinearity 
and the creep dynamic at the input connected in 
series with a linear infinite-dimensional beam 
model.  

The proposed new control concept shown in Fig. 
2 consists of three components: The complex 
hysteresis and creep effects (WP′) are compensated 
by an inverse filter (PK′-1) which can be designed by 
means of the so-called Prandtl-Ishlinskii approach.  
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Fig. 2: Control concept with hysteresis and creep compensation 
for large displacements 



 

Based on the infinite-dimensional mathematical 
model of the piezoelectric bending actuator (GP) a 
flatness-based open-loop tracking controller (FBC) 
is derived, such that the effects due to the beam 
dynamics are suppressed. A passivity-based closed-
loop controller (PBC) derived from the infinite-
dimensional model ensures that the error system is 
stabilized. 

 
Control Concept 
 
As already mentioned in the introduction, the 
control concept consists of a flatness-based 
feedforward controller, see also [4], in combination 
with a passivity-based closed-loop controller for the 
resulting error system. For deriving the control 
concept we assume that the bending actuator, see 
Fig. 1, can be mathematically described by an Euler-
Bernoulli beam model. Thereby, the mid-line of the 
beam is assumed to coincide with the x-axis in the 
stress-free reference state. The displacement of the 
mid-line of the beam is denoted by u(t,x). The 
mathematical model reads as, see [4] for a detailed 
derivation,  
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Thereby, the constants μ, Λ, ΛV(L) only depend on 
geometrical and material parameters. The kinematic 
boundary conditions of the cantilever at the fixed 
end x = 0 are given by ∂x u(t,0) = 0 and u(t,0) = 0. 

The flatness-based trajectory planning is based 
on the solution of (1) in the Laplacian domain that 
yields 
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From the kinematic boundary conditions we can 
immediately deduce that 1 2ˆ ˆ 0χ χ= = . Furthermore, 
by choosing  
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the dynamic boundary conditions are satisfied for 
the control input  
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Thereby, ŷ serves as a so-called possible flat output. 
Furthermore, the bending deflection in operator 
form ˆ( )u x  can be expressed in terms of the flat 
output ŷ in the form  
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Taking advantage of the power series representation 
of the operator functions, see [4], [8], we are able to 
transform the control input V̂  and the bending 
deflection ˆ( )u x  to the time domain by replacing the 
operator sk with dk/dtk, …,2,1=k . Since this task is 
straightforward we will only perform this 
transformation for V̂ . By means of the power series 
representation for 1

ˆ ( )C x , see [4], the control input 
in the time domain reads as  
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For solving the trajectory planning problem a 
desired flat output yd(t) has to be specified and from 
this the associated control input Vd(t) and the beam 
deflection  ud(t,x) can be calculated.  
In the next step of the controller design task we will 
exploit the concept of passivity to stabilize the 
infinite-dimensional error system. Introducing the 
deflection error ue(t,x) = u(t,x) − ud(t,x) and the 
additional control input Ve(t) = V(t) − Vd(t), we get, 
according to the linearity of (1), the error system in 
the form 
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The Hamiltonian of the free error system, i.e. for Ve 
= 0, is given by the expression [4] 
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Then, by making use of the integration by parts 
technique the change of H0 along a trajectory of the 
error system results in 
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Thus, the velocity of the tip angle provides a 
collocated output yc = ∂t∂xue(L) for the control input 
Ve, see, e.g., [6]. At this point it is worth mentioning 
that the collocated output yc can also be directly 
measured by utilizing the direct piezoelectric effect 
of the piezoelectric layers. On condition that the 
sensor electrodes are short-circuited by a charge 
amplifier the time derivative of the electric charge 
corresponds to the collocated output yc, see, e.g., [6] 
for further details. As in our case sensor layers are 
not provided, we can design a modal observer to 
determine the collocated output yc by means of 
measuring the velocity ds/dt of the tip position. 
Now, the simple controller  
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renders (8) negative semi-definite. This gives at 
least a necessary condition for the asymptotic 
stability, see [4] and [5] for a more detailed 



 

treatment of the stability consideration and an 
explicit proof even for a larger class of stabilizing 
controller.  
 
Complex hysteresis and creep compensation 
 
Neglecting the self-generated electric field due to 
the piezoelectric effect, we get the linear relation 

1 10= + PQ Q C V             (10) 
between the voltage V and the charge Q1 for 
sufficiently small signals. The factor CP is the small-
signal capacity of one piezoelectric layer in the 
operating point (V0,Q10). However, as depicted in 
Fig. 3, measurements show that for large voltages V 
this is no longer valid. Therefore, (10) will be 
replaced by a relation of the form  

1 10 1[ ]= +Q Q W V             (11) 
with an appropriate hysteresis and creep operator 
W1. Analogously, for the upper piezoelectric 
actuator layer the charge Q2 results from 
  2 20 2[ ]= + −Q Q W V             (12) 
and thus the electric charge of the middle electrode 
in Fig.1 is given by 

10 1 20 2[ ] ( [ ])= + − + −Q Q W V Q W V .       (13) 
Due to the fact that the two piezoelectric layers are 
build up identically and both layers are driven in the 
same operating point the two nonlinearities can be 
assumed to be identical, i.e. W1 = W2 = W. Thus, we 
have Q = WP[V] with the symmetry property  
  [ ] [ ] [ ] [ ]P PW V W V W V W V= − − = − −       (14) 
which is a necessary condition to approximate the 
nonlinearity WP by the sum PK = P + K of a Prandtl-
Ishlinskii hysteresis operator P and a Prandtl-
Ishlinskii creep operator K. This implies that the 
relation (13) can be replaced by  

[ ]= KQ P V .             (15) 
In practice the charges Q1 and Q2 are measured by 
Sawyer-Tower circuits, see, e.g., [2] and the charge 
of the middle electrode is calculated by Q = Q1 – Q2. 
With the measurements of Q and V we can directly 
identify the operator PK by means of the 
identification methods described in [7].  

Now, (15) motivates to formulate the serial 
trimorph bender of Fig. 1 in form of a Hammerstein-
like model as shown in Fig. 2 with V = WP′[Vi] = 
WP[Vi]/(2CP) and Vi = PK′-1[Vr] = PK

-1[2CPVr] =     
PK

-1[Qr]. This structure enables us the compensate 
the hysteretic and creep nonlinearity at the input by 
means of a compensator PK -1 satisfying the relation  

1[ [ ]]− =K KP P Q Q .            (16) 
The compensator PK

-1, defined by the relation V = 
PK

-1[Q], can be determined by the following implicit 
operator equation 

1[ [ ]]−= −V P Q K V .           (17) 
For further details concerning the theoretical and 
numerical aspects of the solution of (17) the 

interested reader is referred to [3]. Fig 3. shows the 
experimental results obtained for a serial trimorph 
bender as shown in Fig. 1.  
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Fig. 3: Measurement of hysteresis and creep compensation 
 
It can be seen that the measured hysteresis and creep 
characteristics Q = WP[V] due to (14) and Fig. 3 can 
be accurately approximated by a Prandtl-Ishlinskii 
hysteresis and creep operator PK. The relative model 
error defined by  
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is about 1.03 %. Furthermore, Fig. 3 depicts the 
inverse operator PK

-1 and the result of the 
compensation procedure WP[PK

 -1].  
 
Experimental results 
 
The control concept as depicted in Fig. 2 was 
implemented in the real-time environment of 
dSPACE. The piezoelectric actuator under 
consideration is the serial trimorph bender VIBRIT 
1100 of Argillon, see [1]. Fig. 4a depicts the step 
response of the uncontrolled beam for a step input of 
the voltage V(t) with an amplitude of 50 V. Due to 
the small structural damping the step-response of the 
uncontrolled bending actuator has a large overshoot 
and a large settling time. Fig. 4b shows the response 
in the tip position s of the flatness-based open-loop 
control for a reference trajectory of the tip position 
sd with a rising time of 10ms. Especially for small 
displacements the performance of the controller is 
very good. Overshoot and settling time of the beam 
are strongly reduced. For higher electrical voltages 
needed for larger displacements the influence of 
hysteresis and creep effects becomes evident. This 
results in a larger position error sd – s, overshoot and 
settling time. Fig. 4c depicts the result of the 
flatness-based open-loop control in combination 
with the hysteresis and creep compensation for the 



 

0 0.05 0.1 0.15 0.2
−400

−200

0

200

400

0 0.05 0.1 0.15 0.2
−400

−200

0

200

400

0 0.05 0.1 0.15 0.2
−400

−200

0

200

400

0 0.05 0.1 0.15 0.2
−400

−200

0

200

400

same reference trajectories as in Fig. 4b. The 
remaining position error and the overshoot can be 
strongly reduced. As shown in Fig. 4d a further 
reduction of the position error can be realised with 
the proposed passivity-based error feedback 
controller in Fig.2. 
 

 
 

 
 

 

 
Fig. 4: Tracking behaviour of the piezoelectric bender: a) Step 
response b) Open-loop flatness-based controller c) Additional 
hysteresis and creep compensator d) Additional passivity-based 
feedback controller 
 

The result is a high performance tracking behaviour 
of the piezoelectric bender in the large signal range, 
important for practical applications.  
 
Summary 
 
In this paper we have presented a control concept 
for a composite piezoelectric cantilever with large 
displacements consisting of a hysteresis and creep 
compensation based on the Prandtl-Ishlinskii 
approach, a flatness-based open-loop controller and 
a passivity-based error feedback controller which 
guarantees the exponential stability of the overall 
closed-loop system. The control concept was 
implemented on an experimental setup for a 
commercially available serial trimorph bender. The 
measurement results show the feasibility and high 
performance of the proposed control design. 
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