
1

Modelling and control of a smart auxiliary mass damper equipped with a
Bragg grating

Chris May∗ Aldo Minardo† Ciro Natale† Pietro Pagliarulo∗ Salvatore Pirozzi†
∗Laboratory of Process Automation (LPA), Saarland University, Saarbrücken, Germany
†Department of Information Engineering, Second University of Naples, Aversa, Italy

Abstract— This paper presents the results of a key activity of
a large research project in the aeronautics field, funded by the
European Community under the Sixth Framework Programme,
namely the modelling and control of a magnetostrictive actuator
to be used for broadband vibration and noise control. The
developed auxiliary mass damper is designed in order to
meet the demanding requirements of the application at hand,
especially in terms of weight reduction and force capability.
The specifications are successfully satisfied using an inertial
resonant actuator concept based on a nonlinear amplification
mechanism of the seismic mass displacement. The nonlinearities
of the actuator highly affect the problem of its adoption within
the active feedback control system devoted to vibration and
noise reduction of the controlled structure. In order to overcome
the limitation and negative effects of these nonlinearities within
the main control system, the actuator is equipped with an
optical sensor based on a Bragg grating used for a low-level
control loop aimed at imposing a desired linear behaviour to
the actuator itself. A preliminary modelling and characteriza-
tion of the dynamic behaviour of the actuator is performed
taking into account also the hysteretic nonlinearity exhibited
by the active material as well as the nonlinear dynamics of
the mechanical actuator structure. A model-following control
algorithm, designed on the basis of an experimentally identified
dynamic model, is adopted as the low-level control algorithm.
Experimental results show the effectiveness of the approach
and its validity as the first step to be taken during the design
phase of the complete noise and vibration control system.

Index Terms— Smart actuator, Nonlinear behaviour, Model-
following, Magnetostrictive material

I. INTRODUCTION

The present work, which is part of the MESEMA
project [6], [12], has the main objective of designing and
implementing an active noise control system on a full-
scale test rig consisting of a segment of a civil aircraft
fuselage. The problem to be addressed is the reduction of
cabin noise caused by turbulence induced vibrations on the
fuselage exciting the skin panels. The typical “bump” noise
is found in a broad frequency band ranging from 100 Hz
to 400 Hz depending on the value of the trim velocity of
the aircraft. The selected control strategy is based on a
structural approach in which a large number of actuators
with suitable force capability excite the structural elements
of the fuselage in order to robustly counteract the vibration
induced by the primary disturbance and thus the emitted
noise. After a preliminary structural and acoustic analysis of
the test article the actuator specifications have been derived
in terms of required forces and maximum allowed weight.
In detail, each actuator should be able to generate a force

spectrum with a peak of 6 N at 130 Hz with a maximum
weight of 150 g.

Based on a proven and patented actuator concept [13], the
magnetostrictive auxiliary mass damper, shown in Fig. 1, was
optimally designed for this application [14]. The dynamic be-
haviour of the smart auxiliary mass damper depends strongly
on two sources of nonlinearity. The first one is due to the
elastic suspension kinematics used for displacement amplifi-
cation; the second one is due to the hysteretic behaviour of
the magnetostrictive material. As reported in [3], the latter
nonlinear effect can be compensated to improve the perfor-
mance of the smart auxiliary mass damper when the actuator
is used in a feedback control system. This compensation has
been successfully accomplished by means of an hysteresis
inversion algorithm [9], [10] implemented on an FPGA
based hardware platform as detailed in [7]. The kinematic
nonlinearity results in a shift of the actuator’s resonant
frequency with respect to the driving current amplitude. This
nonlinear dynamic behaviour not only complicates the use
of the actuator in the noise control system but also prevents
the actuator from delivering the required force at the desired
frequency. So it is fundamental to implement a low-level
control algorithm able to fix the actuator resonant frequency.
A model-following control strategy [1] which makes use
of the measured displacement of the actuator seismic mass
has been selected. The characteristic of the model-following
algorithm consists in preserving the nature of the input signal
of the low-level control system, which is the output of the
high-level noise control system. A novel sensor based on a
fibre Bragg grating (FBG) has been specially designed for
measurement of the actuator displacement.

Due to their fibre-based, highly localized and wavelength
encoded operation, FBGs offer attractive sensing possibili-
ties, especially in strain and temperature embedded sensing
of smart structures [8]. FBGs are low-weight, small-size
sensors, and they can be easily attached to any material.
Moreover, due to their dielectric nature, FBGs are immune
to electromagnetic irradiation. This was of particular im-
portance in our work, as the magnetostrictive nature of the
actuator would be a source of disturbances in electrical-based
or magnetic-based sensors. FBGs can be usefully employed
as both static and dynamic sensors. In particular, the possi-
bility to employ Bragg gratings to measure dynamic strains,
has been widely demonstrated [17], [4], [2]. Also multi-
point dynamic strain sensing has been reported, by using
multiplexing schemes based on wavelength division and/or
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Fig. 1. Smart auxiliary mass damper.

time division [15], [18]. The use of multiplexing techniques
permits interrogating multiple FBGs written on the same
optical fibre, with a modest increase of the system cost with
respect to a single-FBG interrogation set-up. In the present
work, a single FBG was mounted on the magnetostrictive
actuator in order to measure the displacement of the actuator
itself. Interrogation of the FBG was carried out by using
the narrow-band demodulation technique [19], which will
be described in the following.

The effectiveness of the proposed strategy to control the
smart actuator has been demonstrated through experiments
whose results show that the controlled auxiliary mass damper
has a resonance fixed at the desired frequency value. Future
work will be devoted to using the controlled actuators within
the complete noise control system.

II. ACTUATOR DESCRIPTION AND MODELLING

Fig. 2 shows the fundamental construction inside the smart
auxiliary mass damper [13]. It consists of magnetostrictive
rods surrounded by two coils. The coils are on two back-
ing plates that are connected with the stiff frame via two
elastic suspensions arranged in parallel. The frame itself is
mounted to the vibrating mechanical structure. Due to the
magnetostrictive effect a magnetic field caused by a driving
current I(t) in the coils produces a small extension sA(t) in
the magnetostrictive rods in the horizontal direction. This
extension is transformed by the elastic suspensions to a
significantly larger motion of the total mass –consisting of
the magnetostrictive rods, the coils and the backing plates– in
the perpendicular direction. The displacement amplification
decisively depends on the angle of the elastic suspension at
the working point α0 of the mechanical construction (see
Fig. 2) and is greater the smaller this angle α0 is chosen.
As a result of Newton’s second law, the total moved mass
produces an inertial force that has an effect on the vibrating
mechanical structure [13], [14], [16], [11].

Fig. 2. Schematic design of the smart auxiliary mass damper.

Fig. 3. Schematic diagram of the actuator mechanics.

A. Nonlinear dynamics

The displacement amplification is represented in a first ap-
proximation by two parallel rigid arms of length l suspended
at play-free and frictionless joints (see Fig. 3).

The elasticity of the suspension and the mechanical pre-
load spring for the actuator are considered by the linear
elastic spring with stiffness c2. The structural damping in this
construction is described by the linear viscous damper with
damping d2. The masses of the backing plates, coils as well
as of the moving portions of the suspension and the active
material are concentrated in the two identical masses m2, so
that the moved auxiliary mass consists of 2m2. The mass m1

describes the effective mass of the structure to be dampened.
The spring with stiffness cp and the active force FA describe
the passive mechanical behaviour of the active component.
The force F1 represents the unknown disturbance at the point
of the structure whose oscillations are to be reduced.

The state variables are the suspension angle α(t) and the
angular velocity ω(t). A nonlinear mathematical model in
state space was derived according to the Lagrange formal-
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ism [5]. The state space equations are

ω̇ = −n1(α)ω2 − n2(α)ω − n3(α, α0)
− n4(α)sA + n5(α)F1 (1)

α̇ = ω (2)

with

n1(α) =
2m2 sinα cos α

m1 + 2m2 sin2 α

n2(α) =
2d2(m1 + 2m2) sin2 α

m2(m1 + 2m2 sin2 α)

n3(α, α0) =
2(c2 + cp)(m1 + 2m2)(cos α0 − cos α) sin α

m2(m1 + 2m2 sin2 α)

n4(α) =
cp(m1 + 2m2) sin α

lm2(m1 + 2m2 sin2 α)

n5(α) =
cos α

l(m1 + 2m2 sin2 α)
This nonlinear model is able to reproduce the typical non-
linear effect of resonant frequency shifting with respect to
input current amplitude, experimentally detected as shown in
Fig. 4.
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Fig. 4. Magnitude of frequency response function of the actuator for
different current amplitudes.

B. Hysteresis model

The hysteretic behaviour of the magnetostrictive material
can be modelled well with the modified Prandtl-Ishlinskii
hysteresis operator that is represented by the following
equation

Γ[x] = S[H[x]] (3)

where H is a Prandtl-Ishlinskii hysteresis operator and S is a
Prandtl-Ishlinskii superposition operator [9], [10], [16], [7].
In this way the relationship between the model input sA(t)
and the control input, i.e. the driving current I(t), is given
by the equation

sA(t) = Γ[I(t)] (4)

As mentioned in the Introduction, this relationship can be
inverted according to the method described in [9].

III. OPTICAL SENSOR

A. FBG-based measurement scheme

In our set-up, dynamic strain measurements were carried
out by employing a narrow-band demodulation scheme.
The output light wave from a single longitudinal mode
Distributed FeedBack (DFB) diode laser was used to probe
the wavelength shift of the FBG reflection curve imposed
by the strain signal to be detected. If the laser frequency
is within the linear range of the FBG reflection slope, the
strain signals will change the reflected power, which can
be simply measured using a photodetector [19]. It can be
seen that this technique has several advantages, such as low
cost, fast response, and easy of use. The reflectivity spectrum
of the FBG used in our experiments had a quasi-flat top
from 1552 nm to 1556 nm, with a peak reflectivity of ≥ 75%
(see Fig. 5). The leading edge of the FBG reflection curve
extended from 1547.28 nm to 1550.95 nm (measured from
10% to 90% of maximum reflectivity), whereas the trailing
edge extended from 1556.37 nm to 1557.24 nm. The trailing
edge of the FBG reflection curve allowed for a 72 GHz linear
slope width, and it was chosen as the operating range due
to the higher linearity exhibited by the FBG reflectivity in
this spectral portion. In order to keep a linear relationship
between the reflected optical power and the strain signal, the
DFB laser emitting wavelength must lie within the trailing
edge of the FBG reflectivity spectrum (see Fig. 5). Moreover,
assuming a typical FBG curve shift of 1 nm for an applied
strain of 1000µε [8], the strain level must be kept lower than
870µε in order to avoid sensor output saturation.

The optical set-up employed for FBG interrogation is
schematically illustrated in Fig. 6. Light emitted by a DFB
laser was sent to a Y-coupler, which directed the light to
the FBG. Light reflected from the FBG was then re-directed
to a photodiode, whose bandwidth was on the order of
hundreds of MHz, thus much higher than the bandwidth of
the strain signals to be detected. The output signal from the
photodiode was finally sent to the conditioning electronics,
basically comprised of a bandpass filter used to eliminate the
dc component and high-frequency noise.

B. Mounting and calibration

Before attaching the FBG to the magnetostrictive actuator,
the portion of fibre jacket corresponding to the grating
position was removed, so as to avoid strain transfer loss from
actuator to FBG. The FBG was then pre-stressed and glued
to the actuator by epoxy resin (see Fig. 1). Pre-stressing of
the FBG was necessary in order to avoid buckling of the
fibre in which the sensor is written. Mounting of the FBG
was carried out with the aim to measure one of the state
variables of the system α(t). A sketch of the mounting set-
up is shown in Fig. 7. As the output provided by the FBG
is proportional to the strain of the fibre segment between
the two bonding points A and B, the relationship between
the strain and the angular displacement has to be determined.
Such a relationship can be obtained by means of geometrical
considerations. Referring to Fig. 7, let us start by considering
that, under real experimental conditions, the displacement
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Fig. 5. Reflectivity spectrum of the grating.

Fig. 6. FBG interrogation scheme.

∆x of the moving mass is much smaller than the lever arm
length l. Hence, ∆x ≈ l∆α. Moreover, ∆x is also much
smaller than the fibre segment b, so that we can also assume
∆β ≈ 0. Under this approximation, the displacement ∆x is
nearly equal to ∆b. As the optical output is proportional to
the strain ∆b/b , we can finally write

ε ≡ ∆b

b
≈ l

b
∆α (5)

Hence, under the small signal hypothesis, the quantity
measured by the FBG is directly proportional to the angle
variation ∆α = α − α0. After bonding the FBG, the DFB
laser output wavelength was temperature-tuned in order to
guarantee a linear response of the sensor, over the whole
range of actuator displacement. Calibration of the FBG was
carried out by aid of an accelerometer mounted to the moving
mass, so as to measure the acceleration along the vertical
axis. The sensor sensitivity was estimated by comparing the
measured frequency response functions from the excitation
signal to the second time derivative of the FBG output signal,
and from the excitation signal to the accelerometer output
signal, respectively. Results are shown in Fig. 8. Based on
the calibration constant of the accelerometer, we estimated
an FBG sensitivity of about 37.6mV/µm.

IV. CONTROL STRATEGY

As mentioned before, the actuator has a resonant fre-
quency that shifts with respect to amplitude of the driving
current. This nonlinearity affects the satisfaction of the force

Fig. 7. Sketch of mounting setup.
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Fig. 8. Bragg calibration result: accelerometer (black), Bragg second time
derivative (gray).

requirements and makes the actuator difficult to implement
in the noise control system. Therefore, the low-level control
objective is to fix the resonance of the actuator despite the
amplitude of the input current.

First of all, a linear model reproducing the behaviour of the
actuator in the neighborhood of a given working condition,
i.e. with a given current amplitude and so with a fixed
resonant frequency, is identified using a frequency domain
identification procedure. It can be written in the classical
state-space form as

ẋ(t) = Ax(t) + Bu(t) (6)

y(t) = Cx(t) + Du(t) (7)

where u(t) is the actuator input current and y(t) is the
measured Bragg signal. The state equation (6) corresponds
to the linearised version of the nonlinear model in Eq. (1),(2)



5

about the initial suspension angle α0.
The adopted control strategy is based on a model-

following approach [1] and the control scheme is reported in
Fig. 9. The characteristic of the model-following algorithm
consists in preserving the nature of the input signal of the
control system. This makes the use of the actuator more
transparent in the higher level control system computing the
reference current for the actuator as a result of an outer
feedback loop. This is accomplished by defining a reference
model whose input is just the reference current ur(t) while
the actuator input is the sum of the reference current and a
corrective current uc(t) computed by the controller on the
basis of the output error ey(t) = y(t) − yr(t), yr(t) being
the reference output. In particular, the reference model is
selected equal to the identified linear model of the actuator,
i.e.

ẋr(t) = Axr(t) + Bur(t) (8)

yr(t) = Cxr(t) + Dur(t) (9)

As a consequence, the dynamics of the state error ex(t) =
x(t) − xr(t) is described by the state space representation

ėx(t) = Aex(t) + Buc(t) (10)

ey(t) = Cex(t) + Duc(t) (11)

y(t)

yr(t)

e(t)

ur(t) u(t)

uc(t)

Reference current

Controller

Reference Model

Actuator with Bragg

Fig. 9. Reference model control scheme.

Since the state ex is obviously not accessible, the con-
troller is designed according to a standard LQG procedure
consisting of a Kalman filter as observer of the error dy-
namics and an optimal state feedback regulator. Therefore,
its dynamic equations can be written in the form

ẋc(t) = Acxc(t) + Bcey(t) (12)

uc(t) = Ccxc(t) (13)

where Ac = A−LC−BK+LDK, Bc = L and Cc = −K,
with L and K being the solutions of the two classical Riccati
equations.

V. EXPERIMENTAL RESULTS

The identification of the reference model has been carried
out using FDIDENT, a MATLAB toolbox for identification
in the frequency domain. The actuator has been excited with
a chirp input current in the frequency range [50, 600] Hz
with amplitude 1 A, repeated 8 times, and the signal of
the Bragg sensor has been acquired. Then, the frequency
response function mapping current to the Bragg signal has

been estimated with 8 averages to reduce noise effect and
has been used as data input to the identification procedure.
The reference model resulting from the identification is a
sixth order model and the results of the model validation
are shown in Fig. 10, where the measured and modelled
frequency response functions are reported for comparison.
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Fig. 10. Bode diagram of the identified reference model: modelled (gray)
and measured (black).

The controller has been designed solving the LQG prob-
lem, with a process noise covariance matrix

Q = q0I + qBrB
T
r (14)

with q0 = 1e − 4, I the identity matrix, q = 0.5 · 10−2,
and as measurement noise covariance v = 0.2 · 10−3. The
weights for the regulator problem have been chosen equal
to W = CTC as the state weight and r = 0.1 as the
input weight. Fig. 11 reports the effect of the implemented
controller on the resonant frequency of the actuator. It is
evident that the resonance remains fixed even for different
input current amplitudes when the closed-loop control is
active. Of course, this result requires a control effort, in fact,
for a reference current with an amplitude of 0.7 A, the total
driving current has a peak up to 2 A, as shown in Fig. 12
where the black line represents the reference current and the
gray line represents the total current. The offset current of
2 A is needed for the magnetic bias of the active material.

VI. CONCLUSIONS

A control algorithm based on a model-following approach
has been applied to linearise the dynamic behaviour of a
magnetostrictive auxiliary mass damper exhibiting kinematic
and hysteretic nonlinearities. The inner control loop makes
use of a strain sensor based on a fibre Bragg grating deliv-
ering a signal representing the displacement of the seismic
mass of the device. In follow-up activities, the resulting
linearised system will be implemented within an overall
control system for lowering the sound pressure level in
an aircraft cabin by resorting to a structural active control
approach.
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Fig. 11. Magnitude of the frequency response function of the actuator for
different current amplitudes: open loop (gray) and closed loop (black)
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