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Abstract

The present paper describes a procedure for synthesising an
inverse filter for a complex hysteretic nonlinearity as it occurs
in active materials such as piezoelectric ceramics, magne-
tostrictive materials and shape memory alloys using the so-
called modified Prandtl-Ishlinskii approach. In this synthesis
procedure the parameters of an appropriate linear error model
have to be optimised in a convex polyhedron to ensure the
existence of the corresponding inverse filter. As in future
work concerned with iterative and adaptive compensation
strategies the determination of the parameters should be
performed on-line, the solution of the underlying convex
quadratic programming problem is formulated as the global
exponentially stable equilibrium point of a properly projected
dynamical system.

1 Introduction

The ongoing miniaturisation of mechatronic systems requires,
in addition to the sensor principles which can be miniaturised,
also actuators with a high energy density to be able to achieve
sufficiently high forces in small sites. This requirement is
largely fulfilled by actuators made of magnetostrictive and
piezoelectric materials, shape memory alloys, by electro-
magnetic actuators and so on. But one of the greatest
problems in control is the complex hysteretic characteristic of
sensors and actuators, which causes a non-linear and multi-
valued mapping between the output variable and the input
variable of the transducer. Thereby the non-linear and multi-
valued relation between the corresponding input and output
variables has a very different characteristic depending on the
type of the actuator [1]. One possibility to handle this problem
is to compensate the hysteretic actuator characteristic in open
loop control by using an inverse feed-forward filter. To obtain
a sufficiently precise compensation of the hysteretic nonlinea-
rity the hysteretic characteristic of the actuator has to be
identified and inverted before operation.

In the past few years a general modeling and compensator
design method was developed for such complex hysteretic
nonlinearities based on the so-called modified Prandtl-
Ishlinskii approach [2,3]. A fundamental problem in the

identification of complex hysteretic nonlinearities not only
with the modified Prandtl-Ishlinskii approach but also with
the well-known Preisach approach is given by the fact that
compensators exist only in a certain set of the model
parameter space [6]. Because the underlying error model of
the modified Prandtl-Ishlinskii approach depends linearly on
the error model parameters, and the restrictions can be
formulated through inequality constraints, the admissible
solution set for the parameters is a convex polyhedron, and
the corresponding identification problem to be solved is a
convex quadratic program. For solving these well conditioned
problems before putting the control system into operation the
optimisation theory provides multiple powerful algorithms.
But these algorithms are not suitable for optimisation during
operation of the control system, because they require too
much computing power. A possibility to avoid these
difficulties is to formulate the solution of the bounded
quadratic optimisation problem as a stable equilibrium point
in a proper system of differential equations. This dynamical
system can then be solved through numerical integration very
efficiently from time step to time step during the operation of
the control system. In the unbounded case, for instance, the
right-hand side of the demanded differential equation is given
by the negative gradient of the quadratic target function.

The main subject of this paper is the extension of this negative
gradient approach to the bounded case for which the theory of
projected dynamical systems [4] offers a starting point. The
right-hand side of the differential equation follows in this case
from a projection of the negative gradient which ensures that
the trajectory of the system under no circumstances leaves the
admissible solution set. In contrast to parameter projection
methods normally used in the field of adaptive systems, the
applied projection transformation considers also the non-
differentiability points at the boundaries of the convex
solution set. As in the case of a convex polyhedron these non-
differentiability points often result from the intersection of
smooth convex sets.

2 Solution of quadratic programs with
dynamical systems

Optimisation problems
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H ∈ ℜd×d, g ∈ ℜd, f ∈ ℜ, U ∈ ℜm×d and u ∈ ℜm are called
quadratic programs (QP) and are an integral part of various
identification and synthesis procedures for open-loop and
closed-loop control systems, whose underlying error model is
linearly dependent on the error model parameters w and
whose parameters are bounded by a convex polyhedron K. If
H is positive-definite the quadratic program is strictly convex
and the solution set of the minimisation problem (1) - (3)
consists of only one solution point [5].

2.1 Optimality conditions for bounded quadratic
optimisation problems

The necessary and sufficient condition for a minimum value
w* ∈ K of a strictly convex quadratic function (2) results from
the consideration that in a minimum w* the function V must
not decrease for all feasible variations z − w*, z ∈ K. This
means that in the minimum w* the variation ∆V of the function
V must obey the variational inequality

* * *( ) ( ) ( ) 0  ,  TV V K∆ = ∇ ⋅ − ≥ ∀ ∈w w z w z .     (4)

If the minimum of a strictly convex quadratic function lies
outside the feasible set K, then ∇V(w) ≠ o holds for all w ∈ K
and the fulfillment of the variational inequality depends only
on the direction of ∇V(w) at a boundary point w ∈ ∂K. In this
case the variational inequality is fulfilled if

( ) ( )V C−∇ ∈w w     (5)

holds. The set
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is called the outward normal cone of K at the point w. If the
minimum of the quadratic function lies inside or on the
boundary of the feasibility set K, then there exists a unique w*

∈ K with ∇V(w*) = o and the variational inequality (4) is
fulfilled independently of the direction of z − w*.

2.2 Projection mapping

In the optimisation literature many different algorithms exist
for the solution of the quadratic program (1) - (3) which
cannot be implemented during system operation because of
their high demand on computation resources [5]. The diffe-
rential equation with gradient vector field

0( ) ( ( ))  ,  (0) dt V t= −∇ = ∈ℜw w w w     (7)

used for the solution of unbounded quadratic optimisation
problems during system operation has to be extended in such
a way that (a) the unbounded case is included as a special

case, (b) the solution trajectory remains in the feasible region,
(c) the nondiferentiability points of the boundary are conside-
red and (d) the equilibrium point coincides with the solution
of the variational inequality (4).

A key role for fulfilling these requirements is played by the
projection of the vector v ∈ ℜd at the point w ∈ K to K
defined by

0
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[4]. Fig. 1 explains the geometrical interpretation of the
projection mapping QK for a nondifferentiability point w ∈ ∂K
of the boundary ∂K. For v ∈ C(w) follows QK = o, see fig. 1b.
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Figure 1: Geometrical interpretation of the projection
mapping QK

In the case v ∉ C(w) and w + v ∉ K the direction of QK

coincides with the direction of the feasible variation z − w, z ∈
K which has the smallest distance to v, see fig. 1a. If the
vector v lies within the feasible region then QK and v
coincides. This is shown in fig. 1c.

2.3 Differential equation with projected gradient vector
field

With the projection mapping (8) a type of differential
equation

0( ) ( ( ), ( ( )))  ,  (0)Kt t V t K= −∇ = ∈w Q w w w w   (10)

can be defined which belongs to the class of so-called
projected dynamical systems [4]. At the equilibrium points w∞

∈ K of (10) the left-hand side of the differential equation
vanishes. Thus the equilibrium points fulfill the equation

( , ( ))K V∞ ∞= −∇o Q w w .   (11)

The relationship between the equilibrium points w∞ ∈ K of the
differential equation (10) and the solution points w* ∈ K of
the variational inequality (4) is formulated by theorem 2.4 of
[4]. According to this theorem the equilibrium points w∞ ∈ K
of the differential equation (10) coincide with the solution
points w* ∈ K of the variational inequality (4), if the feasible
region K is a convex polyhedron (3). A statement about the
stability properties of the equilibrium points w∞ ∈ K of the



differential equation (10) can be formulated with theorem 3.7
of [4]. For this purpose the following stability notion is used:
An equilibrium point w∞ ∈ K of the differential equation (10)
is called globally exponentially stable, if there exist constants
D > 0 and λ > 0, such that for all w0 ∈ K

0( ) tt D e λ−
∞ ∞− ≤ −w w w w .   (12)

The stability properties of the equilibrium points w∞ ∈ K of
(10) are strongly influenced by the properties of the gradient
∇V(w). If the Hessian matrix ∇∇V(w) is strongly positive-
definite in the whole region K, it follows

2
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with η > 0. In this case ∇V(w) is called strongly globally
monotone in K and the equilibrium point w∞ ∈ K of (10) is
globally exponentially stable. Due to (2) the stability
properties of the equilibrium points w∞ ∈ K of (10) are given
by

( )V∇∇ =w H   (14)

and thus are determined by the definiteness properties of the
matrix H. For a positive-definite matrix H follows

2
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and the differential equation (10) has exactly one globally
exponentially stable equilibrium point w∞ ∈ K. According to
this min{λi(H)} is the smallest positive real eigenvalue of the
matrix H.

3 Filter synthesis with the modified Prandtl-
Ishlinskii approach

The modified Prandtl-Ishlinskii hysteresis operator has been
developed recently for the modeling and compensation of
asymmetrically complex hysteretic nonlinearities [2,3]. It is
defined as the concatenation of a Prandtl-Ishlinskii hysteresis
operator H and a Prandtl-Ishlinskii superposition operator S
and in vector notation is given by
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The operator H consists of a weighted linear superposition of
n+1 elementary play operators HrH, which are included in (16)
in the n+1-dimensional vector HrH. The rate-independent
characteristic of the play is characterised by the threshold-
dependent x-y-trajectory, see fig. 2a. The weights wHi, the
thresholds rHi and the initial values zH0i, i = 0 . . n of the play
operators are considered in the vector notation (16) by the
vector of weights wH

 T = (wH0 wH1 . . wHn), the vector of
thresholds rH

 T = (rH0 rH1 . . rHn) with rH0 = 0 and the vector of
the initial values zH0

T = (zH00 zH01 . . zH0n). The outputs of the
elementary operators zHi = HrH[x,zH0i], i = 0 . . n represent the
inner system state or the memory of the discrete-threshold
Prandtl-Ishlinskii hysteresis operator.
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Figure 2: x-y-trajectory of the play (a) and the one-sided
dead-zone operator (b)

The memory-less superposition operator S describes the
deviation of the real characteristic from the odd symmetry
property of the operator H [2,3]. It consists of the weighted
linear superposition of 2l+1 one-sided dead-zone operators
SrS, which are included in (16) in the 2l+1-dimensional vector
SrS. The rate-independent transfer characteristic is characteri-
sed by the threshold-dependent x-y-trajectory shown in fig.
2b. The weights wSi and the thresholds rSi, i = −l . . +l of the
one-sided dead-zone operators are considered in the vector
notation (16) by the vector of weights wS

 T = (wS−l . . wS0 . .
wSl) and the vector of thresholds rS

T = (rS−l . . rS0 . . rSl) with rS0

= 0. The corresponding compensator
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exists uniquely in the convex polyhedron
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and follows from the inversion of H and S and the
concatenation of S -1 and H -1 [2,3]. The matrices and vectors
UH ∈ ℜn+1×n+1, uH ∈ ℜn+1, US ∈ ℜ2l+1×2l+1 and uS ∈ ℜ2l+1 in the
inequality constraints in (18) are given by
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ε  > 0 is a lower bound and a design parameter which permits
the change of strict inequality contraints by the inequality
constraints in (18).

According to (17) the model structures of the Prandtl-
Ishlinskii operators H and S are obviously invariable
concerning the inversion operation. For the calculation of the
inverse filter from the model and vice versa only the
thresholds rH and rH’, the weights wH and wH’and the initial
values zH0 and zH0’ have to be calculated by the corresponding
mappings

wH′ = ΦΦΦΦH(wH) or wH = ΦΦΦΦH(wH′),   (19)

 rH′ = ΨΨΨΨH(rH ,wH) or  rH = ΨΨΨΨH(rH′ ,wH′)   (20)

     zH0′ = ΘΘΘΘH(zH0,wH) or zH0 = ΘΘΘΘH(zH0′,wH′)   (21)

 wS′ = ΦΦΦΦS(wS) or  wS = ΦΦΦΦS(wS′)   (22)

and

  rS′ = ΨΨΨΨS(rS ,wS) or   rS = ΨΨΨΨS(rS′ ,wS′) .   (23)

The derivation of these mappings is not the aim of this article.
For this purpose we refer to the original papers [2,3].

3.1 Generalised error model

The invariability of the Prandtl-Ishlinskii operators H and S
refering to the inversion operation makes it possible to
generate a generalised error model
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which depends linearly on the weights wH and wS’. This
generalised error model is the starting point for the synthesis
of the modified Prandtl-Ishlinskii hysteresis operator Γ and its
compensator Γ -1 starting from the measured input signal x(t)
and output signal y(t). For the real values rH, wH, zH0, rS’, wS’
of the generalised error model follows
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for all t and wH0 > 0. Therefore the expression between the
parentheses has to be zero for all times. Thus the error model
is overdetermined with one degree of freedom and conse-
quently wH0 = 1 can be given as a real value. With x =
HrH0[x,zH00] follows the alternative representation
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The n-dimensional vectors rG, wG, zG0 und GrG result from the
n+1-dimensional vectors rH, wH, zH0 and HrH by cancelling the
first components. The weights wG ∈ ℜn and wS’ ∈ ℜ2l+1 in
(25) are combined in the vector w ∈ ℜd and the output signals
GrG[x,zG0](t) ∈ ℜn and −Sr’S[y](t) ∈ ℜ2l+1 of the elementary
operators are combined in the signal vector ΨΨΨΨ[x,y](t) ∈ ℜd

with d = n+2l+1. Starting from the generalised error model
synthesis of the modified Prandtl-Ishlinskii hysteresis operator
Γ and its compensator Γ -1 is realised in four steps.

3.2 Determination of the error model parameters

In the first synthesis step the thresholds rG and rS’ and the
initial values zG0 are determined by the formulas
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and

0 0   ;   1 . . G iz i n= = .   (28)

In addition to the the model orders n and l, the maximum of
the absolute value of the measured input signal and the
maximum and minimum value of the output signal must be
given. Moreover, during identification (28) assumes the
evolution of the hysteretic state from the so-called „virgin“ or
„demagnetised“ state.

The determination of the weights is the aim of the second step
and follows from the least-square minimisation of the
generalised error model (25), which means by the solution of
the bounded quadratic optimisation problem (1) - (3) with
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The matrix UG ∈ ℜn×n in (30) results from UH by cancelling
the first row and column. The vector uG ∈ ℜn in (30) results
from cancelling the first component of uH − i with iT = (1 1 . .
1) ∈ ℜn+1. (3) and (30) guarantee the existence of the
operators H -1 and S starting from the operators H and S -1 and
vice versa and thus the applicability of the transformation
mappings (19-23). According to section 2 the quadratic
program (1) - (3) with (29) and (30) can be solved by the
numerical time-integration of the differential equation (10).
For this purpose the initial values of (10) must lie within the
feasible region. A meaningful assumption for the determina-
tion of the initial values is to have no information about the
hysteretic nonlinearity. In this case it is meaningful to choose
the initial values for the error model in such a way that the



model Γ and its compensator Γ -1 exhibit the behaviour of the
identity operator I. From this idea follows the initial values
wG0

T = (0 0 . . 0) ∈ ℜn and wS0’ = (0 . . 0 1 = wS00 0 . . 0) ∈
ℜ2l+1.

According to section 2 the stability properties of the
differential equation depend decisively on the definiteness
properties of the Hessian matrix ∇∇V. If the inequality

( )2

0

[ , ]( )  d 0    \{ }
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is fulfilled the Hessian matrix ∇∇V is positive-definite and
there exists exactly one globally exponentially stable
equilibrium point w∞, which is also the unique global
mimimum value w* of the optimisation problem (1) - (3).
Condition (31) demands the nonexistence of any vector of
weights apart from the zero vector which is perpendicular to
the signal vector generated by the elementary operators for all
0 ≤ t ≤ tE. This condition is fulfilled if the components of the
signal vector are all different from zero and moreover linearly
independent in the interval 0 ≤ t ≤ tE. The latter condition is
given by the fact that because of (26-27) the elementary
operators in the signal vector have different thresholds. The
former condition  requires the crossing of every threshold rGi,
i = 1 . . n and rS’i , i = −l . . l by the amplitudes of the input
signal x(t) and the output signal y(t). Because of (26-27) this
property of the input and output signal is given a-priori as
well.

3.3 Model and compensator synthesis

In the third step the parameters of the identified Prandtl-
Ishlinskii hysteresis operator H have to be completed by

(1 )T T
H G=w w ,   (32)

 (0 )T T
H G=r r ,   (33)

and

     0 0 0( )T T
H Gx=z z .   (34)

In the fourth step the corresponding model Γ and the
corresponding compensator Γ -1 are generated by the trans-
formation mappings (22-23) and (19)-(21), respectively.

4 Results

The procedure for the design of inverse hysteretic filters with
projected dynamical systems was tested by means of the
measured complex hysteretic displacement-voltage relation-
ship W of a piezoelectric stack transducer shown in fig. 3 as a
black curve. The voltage U of the transducer is the system
input x and the displacement s the system output y. For the
modeling of the measured characteristic a modified Prandtl-
Ishlinskii hysteresis operator Γ with a model order of n = 7
and l = 3 was used. This model order results in a number of
n+1 = 8 play operators for modeling the hysteretic memory
and 2l+1 = 7 one-sided deadzone operators for modeling the
memory-free saturation characteristic. The maximum of the

absolute value of the measured input voltage amounts in this
case to 500 V. The minimum and the maximum of the
measured displacement signal are −24.08 µm and +19.38 µm.
The threshold values rH and rS’ of the generalised error model
E are shown in table 1.

Table 1: Weights and threshold values of the modified
Prandtl-Ishlinskii hysteresis operator Γ and its corresponding
inverse Γ -1

After the synthesis of the matrix H, the vector g and the scalar
f by means of the measured data according to (25) and (29)
the weights wH and wS’ of the generalised error model E are
determined through the time-integration of the corresponding
projected dynamical system (10). Due to the bounded space
the discussion of the time-discrete scheme for the numerical
solution of (10) is beyond the scope of this article. A detailed
discussion of this topic can be found in [4]. The equilibrium
point w∞ of the weight vector wT = (wG

T, wS’
T) is given by the

vector wS’ and the components wHi, i = 1 . . n of the vector wH

shown in table 1. The vectors rH and wH in table 1 represent
the completion of the vectors rG and wG according to (32) -
(33). The thresholds rS and the weights wS in table 1 result
from the transformation mappings (22) - (23) and are together
with the thresholds rH and the weights wH the parameter base
for the modified Prandtl-Ishlinskii hysteresis operator Γ. As
shown in fig. 3 as a dark grey curve the trajectory of Γ is in
good agreement with the measured characteristic W. The
thresholds rH’ and the weights wH’ in table 1 result from the
transformation mappings (19) - (20). They determine together
with the thresholds rS’ and the weights wS’ the transfer
characteristic of the compensator Γ -1. The trajectory of Γ -1 is
shown in fig. 3 as a grey curve. The light grey curve in fig. 3
displays the compensation effect of a feedforward control
scheme s = Γ -1[W[sc]] with sc as the given displacement
signal. This results in a strong linearisation of the hysteretic
actuator charateristic of the piezoelectric transducer.

As an example fig. 4 shows the evolution of the error-model
parameter wG0 in time for the optimisation with the
corresponding projected dynamical system (10) as a solid line

I rH wH rH’ wH’
0 +0.00⋅10+0 +1.00⋅10+0 +0.00⋅10+0 +1.00⋅10+0

1 +6.25⋅10+1 +2.76⋅10−1 +6.25⋅10+1 −2.16⋅10−1

2 +1.25⋅10+2 +1.57⋅10−1 +1.42⋅10+2 −8.60⋅10−2

3 +1.88⋅10+2 +1.60⋅10−1 +2.32⋅10+2 −7.00⋅10−2

4 +2.50⋅10+2 +1.18⋅10−1 +3.31⋅10+2 −4.33⋅10−2

5 +3.13⋅10+2 +1.22⋅10−1 +4.38⋅10+2 −3.88⋅10−2

6 +3.75⋅10+2 +6.12⋅10−2 +5.53⋅10+2 −1.77⋅10−2

7 +4.38⋅10+2 +1.78⋅10−1 +6.71⋅10+2 −4.54⋅10−2

j rS wS rS’ wS’
−3 −6.14⋅10+2 +1.50⋅10−3 −1.81⋅10+1 −1.46⋅10+0

−2 −4.21⋅10+2 +2.07⋅10−3 −1.20⋅10+1 −2.27⋅10+0

−1 −2.15⋅10+2 +1.17⋅10−3 −6.02⋅10+0 −1.44⋅10+0

  0 +0.00⋅10+0 +2.69⋅10−2 +0.00⋅10+0 +3.72⋅10+1

+1 +1.87⋅10+2 −6.52⋅10−4 +4.85⋅10+0 +1.00⋅10+0

+2 +3.80⋅10+2 −1.37⋅10−3 +9.69⋅10+0 +2.29⋅10+0

+3 +5.83⋅10+2 −1.24⋅10−3 +1.45⋅10+1 +2.31⋅10+0



and with the differential equation (7) which is the couterpart
of (10) for the unconstrained case as a dashed line.
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Figure 3: Modified Prandtl-Ishlinskii operator Γ and the
corresponding inverse Γ -1 for a typical measured piezoelectric
actuator characteristics W

The grey shaded area in fig. 4 marks a parameter region where
the inequality contraints in (3) are violated and thus the
existence of a compensator Γ -1 fails. The time-integration of
(7) leads to a time evolution of wG0 which produces a time
intervall for which the compensator Γ -1 does not exist. This is
a crucial property for every iterative learning compensation
strategy which uses the above identification scheme for the
on-line compensator synthesis.
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Figure 4: Evolution of the error-model parameter wG0 in time

In contrast to (7) the time integration of (10) produces a time
evolution of wG0 which slides along the boundary of the
feasibility set K where the time-integration of (7) crosses the

boundary. As a consequence of the projection mechanism in
(10) the compensator Γ -1 exists at all times. This is an
essential assumption for the design of an iterative learning
compensation strategy for complex hysteretic nonlinearities
based on the synthesis procedure described in section 3.

5 Summary and prospects

The present paper describes a procedure for synthesising an
inverse filter for a complex hysteretic nonlinearity as it occurs
in active materials such as piezoelectric ceramics,
magnetostrictive materials and shape memory alloys using the
so-called modified Prandtl-Ishlinskii approach. In this
synthesis procedure the parameters of an appropriate linear
error model have to be optimised in a convex polyhedron to
ensure the existence of the corresponding inverse filter. As in
future work concerned with iterative and adaptive compensa-
tion strategies the determination of the parameters should be
performed on-line, the solution of the underlying convex
quadratic programming problem is formulated as the global
exponentially stable equilibrium point of a properly projected
dynamical system. In contrast to the formulation of the on-line
optimisation process as an unconstrained dynamical system
the formulation as a projected dynamical system ensures the
existence of the inverse filter at all times.
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