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Abstract

Undesired complex hysteretic nonlinearities are present to varying degree in virtually all

smart material based sensors and actuators provided that they are driven with sufficiently high

amplitudes. This necessitates the development of purely phenomenological models which

characterize these nonlinearities in a way which is sufficiently accurate, robust, amenable to

control design for nonlinearity compensation and efficient enough for use in real-time

applications. To fulfill these demanding requirements the present paper describes a new

compensator design method for invertible complex hysteretic nonlinearities which is based on

the so-called modified Prandtl-Ishlinskii hysteresis operator. The parameter identification of

this model can be formulated as a quadratic optimization problem which produces the best

L2
2-norm approximation for the measured input-output data of the real hysteretic nonlinearity.

Special linear inequality and equality constraints for the parameters guarantee the unique

solvability of the identification problem and the invertibility of the identified model. This

leads to a robustness of the identification procedure against unknown measurement errors,

unknown model errors and unknown model orders. The corresponding compensator can be

directly calculated and thus efficiently implemented from the model by analytical

transformation laws. Finally the compensator design method is used to generate an inverse

feedforward controller for a magnetostrictive actuator. In comparision to the conventional

controlled magnetostrictive actuator the nonlinearity error of the inverse controlled

magnetostrictive actuator is lowered from about 50 % to about 3 %.

Keywords

Hysteresis, Nonlinear Systems, Modeling, Identification, Hysteresis Compensation



�
��
��
��
�

2

1 Introduction

Complex memory-free nonlinearities or in generalization complex hysteretic nonlinearities

are present to varying degree in virtually all smart material based sensors and actuators

provided that they are driven with sufficiently high amplitudes. Well known examples for

complex hysteretic nonlinearities in smart material systems are piezoelectric, magnetostrictive

and shape memory alloy based actuators and sensors [2]. In many applications, these

nonlinearities can be limited through the choice of proper materials and operating regimes so

that linear sensor and actuator characteristics can be assumed. In the consequence of more

stringent performance requirements a large number of systems are currently operated in

regimes in which memory-free or hysteretic nonlinearities are unavoidable. This necessitates

the development of purely phenomenological models which characterize these nonlinearities

in a way which is sufficiently accurate, robust, amenable to control design for nonlinearity

compensation and efficient enough for use in real-time applications.

Models of hysteretic nonlinearities have evolved from two different branches of physics:

ferromagnetism and plasticity theory. The roots of both branches go back to the end of the

19th century. But only at the beginning of the seventies of the 20th century a mathematical

formalism for a systematic consideration of hysteretic nonlinearities was developed.  The core

of this theory is formed by so-called hysteresis operators which describe hysteretic transducers

as a mapping between function spaces [7]. But it is only since the beginning of the 90s that

engineers employ this theory on a larger scale to develop modern strategies for the

linearisation of hysteretic systems with an inverse control approach. One reason for this is the

increasing number of mechatronic applications in recent years which use new solid-state

actuators based on magnetostrictive or piezoelectric material or shape memory alloys.

Whereas in the beginning mainly the well-known Preisach operator was used for the modeling

and linearization of solid-state actuators with the inverse control approach [5,12], recent
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papers also reference the so-called Krasnosel’skii-Prokrovskii operator [15] and the so-called

Prandtl-Ishlinskii operator [4,6,9] which belongs to an important subclass of the Preisach

operator [3]. In contrast to the general Preisach and Krasnosel’skii-Prokrovskii hysteresis

modelling approach this subclass permits to design the compensator analytically which is an

excellent precondition for the use in real-time applications [3,8]. Other well-known hysteresis

compensation techniques use compensators based on models for so-called local hysteretic

nonlinearities [1,13]. But these models are to simple in its memory structure to model the

complex hysteresis nonlinearities in smart material systems in a sufficiently precise way.

To develop a consistent phenomenological design concept for a compensator of an invertible

complex hysteretic nonlinearity which is sufficiently flexible in its modeling capabilities and

moreover well-suited for real-time applications is not a simple task because it covers in

general the following coupled design steps: modeling the real hysteretic nonlinearity,

identification of the model parameters to adapt the model to the real hysteretic nonlinearity

and inversion of the model to obtain the desired compensator. Especially the mathematical

complexity of the identification and inversion problem depends on the phenomenological

modeling method (for example Preisach, Krasnosel’skii-Prokrovskii or Prandtl-Ishlinskii

modeling) and influences strongly the practical use of the design concept. Another difficulty

of the identification problem follows from the strong sensitivity of the model parameters to

unknown measurement errors of the input-output data, unknown model errors and unknown

model orders. Due to these effects a parameter identification can result in the best case to a

poor model accuracy or in the worst case to a locally non-invertible model and as a

consequence the whole compensator design fails. Therefore the robustness against these

effects is an inherent requirement for a consistent phenomenological compensator design

method.
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To overcome these difficulties the present paper describes a new compensator design concept

for complex hysteretic nonlinearities based on the Prandtl-Ishlinskii modeling approach which

is robust in the sense mentioned above. The robustness of the new compensator design

method is reached by the consideration of linear inequality constraints for the free model

parameters which guarantee a search for the best L2
2-norm approximation of the measured

output-input data only in those parameter ranges where the identified model is invertible.

2 Prandtl-Ishlinskii Modeling and Compensation of Complex Hysteretic Nonlinearities

In the mathematical literature the notation of the hysteretic nonlinearity will be equated

with the notation "rate-independent memory effect" [3,10,14]. This means that the present

output signal value of a system with hysteresis depends not only on the present value of the

input signal but also on the order of their amplitudes, especially their extremum values, but

not on their rate in the past.

At the beginning of the 20th century Madelung investigated experimentally the branchings

and loopings of ferromagnetic hysteresis which result from the rate-independent memory

property and stated the following three rules from his observations [3], see Fig. 1.

1. Any curve C1 emanating from a turning point A of the output-input trajectory is uniquely

determined by the coordinates of A.

2. If any point B on the curve C1 becomes a new turning point, then the curve C2 originating

at B leads back to the point A.

3. If the curve C2 is continued beyond the point A, then it coincides with the continuation of

the curve C which led to the point A before the C1-C2 - cycle was traversed.

Additionally to these three Madelung's rules a fourth important observation can be made for

actuator and sensor characteristics of smart materials, and it is exactly this property of real

hysteretic nonlinearities in which the complex ones differ from the non complex ones.
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 4. From a non turning point D within the hysteretic region Ω more than one branch can be

traversed.

The branch which was traversed is uniquely determined by the relevant past history of the

input signal.

2.1 Modeling of Complex Hysteretic Nonlinearities

Because of its phenomenological character the concept of hysteresis operators developed by

Krasnosel'skii and Pokrovskii in the 1970s allows a powerful modeling of complex hysteretic

nonlinearities [7]. The basic idea consists of the modeling of the real complex hysteretic

nonlinearities by the weighted superposition of many so-called elementary hysteresis

operators. One of the most familiar and most important elementary hysteretic mapping

y t H x y trH
( ) = [ , ]( )0 (1)

between the input signal x and the output signal y is the so-called play or backlash operator

HrH
which is often used to model mechanical play in gears with one degree of freedom. It is

normally defined by the recursive equation

y t H x t y t ri H( ) = ( ( ), ( ), ) (2)

with the initial condition

y t H x t y rH( ) = ( ( ), , )00 0 (3)

for the output signal at initial time t0. It depends on the independent initial value y0 of the

output and the sliding symmetrical dead-zone function

H x y r x r x r yH H H( , , ) = max{ , min{ , }}− +       (4)

for piecewise monotonous input signals with a monotonicity partition t0 ≤ t1 ≤ . . ≤ ti ≤ t ≤ ti+1 .

. ≤ tN = te [3]. The operator is characterized by its threshold parameter rH ∈  ℜ +
0. Fig. 2 shows

the rate-independent output-input trajectory of this elementary hysteresis operator.
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Although the three Madelung's rules hold for the play operator it can be easily realized that the

hysteretic sensor and actuator characteristics of real smart materials are of much higher

complexity, note also rule 4.

To obtain a more powerful model for hysteretic nonlinearities we introduce the so-called

threshold-discrete Prandtl-Ishlinskii hysteresis operator H by the linear weighted superposition

of many play operators with different threshold values. From this follows

H x t x tH
T

HH
[ ]( ) : [ ]( )= ⋅w H zr , 0 (5)

with the vector of weights wH
T = (wH0 wH1  .. wHn), the vector of thresholds rH

T = (rH0 rH1  .. rHn)

with 0 = rH0 < rH1 < .. < rHn < +∞ , the vector of initial states zH0
T = (zH00 zH01 .. zH0n) of the

play operators and the vector of the play operators

 [ , ]( ) ( [ , ]( ) [ , ]( ) [ , ]( ))H zrH H H Hn
x t H x z t H x z t H x z tH

T
r H r H r H n0 00 01 00 1

==== . . .

The hysteretic characteristic of the Prandtl-Ishlinskii hysteresis operator is completely defined

by the characteristic of the so-called initial loading curve. This special branch will be

traversed if the initial state of the Prandtl-Ishlinskii hysteresis operator is zero and it is driven

with a monotonous increasing input signal. The initial loading curve can be fully characterized

by and therefore equated with a threshold-dependent piecewise linear function

ϕ ( ) = ( )  ;     ;    .  .  r w r r r r r i nH Hj H Hj
j

i

Hi H Hi−−−− ≤≤≤≤ <<<< ====
====

++++∑∑∑∑
0

1 0 , (6)

with rHn+1 = ∞ and

d

d
( ) =   ;     ;    .  .  

r
r w r r r i n

H
H Hj

j

i

Hi H Hiϕ
====

++++∑∑∑∑ ≤≤≤≤ <<<< ====
0

1 0 . (7)

It is called the generator function of the Prandtl-Ishlinskii hysteresis operator [8], see Fig. 3

for a threshold-discrete Prandtl-Ishlinskii hysteresis operator with a model order of n = 4.
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2.2 Compensation of Complex Hysteretic Nonlinearities

Under the consideration of the linear inequalitiy constraints

U w u 0H H H⋅ − ≤ (8)

for the weights with the matrix

U H =

−
−

−





















1 0 0

0 1 0

0 0 1

. .

. .

. . . .

. . . .

. .

 , the vector uH =

−



















ε
0

0

.

.

and a possibly infinite small number ε > 0 the generator function is strongly monotonous for

rH  ≥ 0 and therefore the inverse of the generator function ϕ -1(rH) exists uniquely for rH ≥ 0.

ϕ -1(rH) is piecewise linear and strongly monotonous and can therefore also be regarded as a

generator function

′′′′ ′′′′ ′′′′ ′′′′ −−−− ′′′′ ′′′′ ≤≤≤≤ ′′′′ <<<< ′′′′ ====
====

++++∑∑∑∑ϕ ( ) = ( )  ;     ;    .  .  r w r r r r r i nH Hj H Hj
j

i

Hi H Hi
0

1 0 , (9)

of a threshold-discrete Prandtl-Ishlinskii hysteresis operator with rHn+1′ = ∞ and

d

d
( ) =   ;     ;    .  .  

′′′′
′′′′ ′′′′ ′′′′ ≤≤≤≤ ′′′′ <<<< ′′′′ ====

====
++++∑∑∑∑

r
r w r r r i n

H
H Hj

j

i

Hi H Hiϕ
0

1 0 ,   (10)

namely the inverse threshold-discrete Prandtl-Ishlinskii hysteresis operator

H y t y tH
T

HH

−
′= ′ ⋅ ′1

0[ ]( ) : [ ]( )w H zr ,   (11)

with transformed initial states zH0′, threshold values rH′ and weights wH′. The transformation

law rH′ = ΩΩΩΩH(rH ,wH) for the thresholds results from the relation ′r rHi Hi= ( )ϕ . From this

follows

′ − =
=
∑r w r r i nHi Hj
j

i

Hi Hj= ( )   ;     .  .  
0

0   (12)
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for the threshold-discrete case, see Fig. 4. The transformation law wH′ = ΞΞΞΞH(wH) for the

weights results from the relation 
d

d
( )

d

d
( )

′
′ =

r
r

r
r

H
Hi

H
Hiϕ ϕ1 , see Fig. 4. From this follows

′ =w
wH

H
0

0

1
 and ′ = −

+ +
=

= =

−

∑ ∑
w

w

w w w w
i nHi

Hi

H Hj
j

i

H Hj
j

i

( )( )
   ;     .  .  

0
1

0
1

1 1 .   (13)

The transformation law zH0′ = ΨΨΨΨH(zH0,wH) for the initial states results from the relation

′ − ′
′ − ′

=
−
−

+

+

+

+

z z

r r

z z

r r
H i H i

Hi Hi

H i H i

Hi Hi

0 1 0

1

0 1 0

1

 between the initial states and the corresponding thresholds which

is the threshold-discrete counterpart to the relation 
d

d
( )

d

d
( )

′
′ =

r
z r

r
z r

H
H

H
H  for the threshold-

continuous case discussed in [8]. From this follows

′ = =
= = +
∑ ∑z w z w z i nH i j
j

i

H i j H j
j i

n

0 0 0+    ;     .  .  
0 1

0    (14)

as the transformation law for the initial states.

2.3 Properties of the Prandtl-Ishlinskii Approach

The Prandtl-Ishlinskii hysteresis operator provided with the inequality constraints (8) for the

weights has the following more or less obvious properties:

1.  Because the Madelung's rules persist under linear superposition, they hold also for the

threshold-discrete Prandtl-Ishlinskii hysteresis operator. Moreover, due to the n > 1 inner

hysteretic state variables different branches can be traversed from a non turning point D

which is in agreement with rule 4. This property agrees at least qualitatively with

experimental observations for complex hysteretic nonlinearities.

2.  The consideration of the inequality constraints (8) guarantees the invertibility of the

threshold-discrete Prandtl-Ishlinskii hysteresis operator and leads to a convex generator

function ϕ. Consequently, the increasing branches of the hysteresis operator are always

convex and thus the hysteresis loops are always counterclockwise oriented. Moreover the
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invertible Prandtl-Ishlinskii hysteresis operator described by the definition equation (5) and

the inequality constraints (8) depends linear on the weights. For given thresholds the

adaption of the model to the measured output-input data can be formulated as the

minimization of the L2
2-norm of the difference between the model output H[x](t) and the

output signal y(t). This leads to a quadratic optimization problem for the weights with

linear inequality constraints which has only one global solution. This guarantees a unique

best L2
2-norm approximation of the measured hysteretic characteristic in that space of the

weights which leads to an invertible threshold-discrete Prandtl-Ishlinskii hysteresis

operator with convex and couterclockwise loop orientation.

3.  The inversion operation which is given by the transformation laws does not change the

structure of the threshold-discrete Prandtl-Ishlinskii hysteresis operator. This leads to a

direct formulation and thus to a very efficient implementation of the corresponding

compensator which is profitable for real-time control applications.

 4. The closed loops which will be traversed for input signals oscillating between maximum

and minimum values have an odd symmetry to the center point of the corresponding loop.

This so-called odd symmetry property is a property of the play operator and persists also

under linear superposition.

The convexity property 2 which follows from the inequality constraints (8) and the odd

symmetry property 3 which is an inherent model characteristic are the main drawbacks of this

Prandtl-Ishlinskii modeling approach because they are often too restrictive for real complex

hysteretic nonlinearities. An intuitive idea to overcome these restrictions is to combine in

series the hysteresis operator and a continuous, non convex and non symmetrical memory-free

nonlinearity. The main problem in this extension is to save the robustness of the design

procedure for compensators of complex hysteretic nonlinearities presented before. The key is

to find a modeling approach for complex memory-free nonlinearities which has the same
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pleasant properties relating to the identification and inversion operations as the Prandtl-

Ishlinskii modeling approch for complex hysteretic nonlinearities.

3 Prandtl-Ishlinskii Modeling and Compensation of Memory-free Nonlinearities

In the mathematical literature memory-free nonlinearities are described by so-called

superposition operators. The notation memory-free means that the present output signal value

of the corresponding system depends only on the present input signal value. Therefore,

superposition operators can be fully defined by functions. Modeling approaches for general

continuous and perhaps differentiable memory-free nonlinearities which use the linear

weighted superposition of elementary superposition operators defined by elementary functions

are known for a long time, see for example power series expansion, Fourier series expansion

etc.

3.1 Modeling of Memory-free Nonlinearities

In this paper another special modeling technique is used which is very close to the Prandtl-

Ishlinskii modeling approach for complex hysteretic nonlinearities and coincides with it in a

wide range. It bases on the weighted superposition of so-called one-sided dead-zone operators

y t S x trS
( ) = [ ]( )   (15)

which are defined by the relation

 ( ) ( ( ) )y t S x t rS= ,   (16)

with the one-sided dead-zone function

 ( ( ) )

max{ ( ) ,0} ;

( ) ;

min{ ( ) ,0} ;

S x t r

x t r r

x t r

x t r r
S

S S

S

S S

, =
− >

=
− <









0

0

0

  (17)

between the present values of the corresponding output and input signal. This elementary

superposition operator is also fully characterized by a threshold parameter rS ∈  ℜ . Fig. 5
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shows the rate-independent output-input trajectory of this elementary superposition operator

for different threshold values.

Thus the complex superposition operator for the approximation of more general continuous

memory-free nonlinearities is given by

S x t x tS
T

S
[ ]( ) : [ ]( )==== ⋅⋅⋅⋅w Sr   (18)

with the vector of weights wS
T = (wS-l .. wS-1 wS0 wS1 .. wSl), the vector of thresholds rS

T = (rS-l ..

rS-1 rS0 rS1 .. rSl) with -∞ < rS-l < .. < rS-1 < rS0 = 0 < rS1 < .. < rSl < +∞ and the vector of the one-

sided dead-zone operators

 [ ]( ) ( [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ))SrS S l S S S Sl
x t S x t S x t S x t S x t S x tT

r r r r r=
− −

! !
1 0 1

.

Because of its high similarity to the threshold-discrete Prandtl-Ishlinskii hysteresis operator it

is called the threshold-discrete Prandtl-Ishlinskii superposition operator. It should be

mentioned that in contrast to the Prandtl-Ishlinskii hysteresis operator the Prandtl-Ishlinskii

superposition operator encloses also elementary operators with negative thresholds. For this

reason the Prandtl-Ishlinskii superposition operator is also able to approximate continuous

memory-free nonlinearities which are not odd symmetrically to the origin.

An inherent requirement for every actuator or sensor which behaves in the quasistatic range

like a continuous memory-free nonlinearity is the strong monotonicity of its output-input

trajectory. This requirement can be considered by the linear inequality constraints for the

weights

U w u 0S S S⋅ − ≤   (19)

with the matrix
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U S =

− − −

− −
−
− −

− − − −



























1 1 1 0 0

0 1 1 0 0

0 0 1 0 0

0 0 1 1 0

0 0 1 1 1 1

! !
" # " " " $ "
! !
! !
! !
" $ " " " # "
!

 and the vector uS =

−

−
−
−

−



























ε

ε
ε
ε

ε

"

"

because they guarantee the strong monotonicity of the unique piecewise linear output-input

trajectory of the threshold-discrete Prandtl-Ishlinskii superposition operator.

3.2 Compensation of Memory-free Nonlinearities

In exactly the same way as for the initial loading curve of threshold-discrete Prandtl-Ishlinskii

hysteresis operator two threshold-dependent generator functions ϕ+(rS) and ϕ-(rS) can be

defined for the unique positive and negative branch of the threshold-discrete Prandtl-Ishlinskii

superposition operator. See Fig. 6 for a threshold-discrete Prandtl-Ishlinskii superposition

operator with a model order of l = 4.

And with exactly the same arguments as before we get the following results: In the whole

space of the weights which suffices the inequality constraints (19) the inverse of the threshold-

discrete Prandtl-Ishlinskii superposition operator exists uniquely and is also a threshold-

discrete Prandtl-Ishlinskii superposition operator with transformed thresholds and weights.

Thus it is given by

S y t y tS
T

S

−−−−
′′′′==== ′′′′ ⋅⋅⋅⋅1[ ]( ) : [ ]( )w Sr .   (20)

Moreover due to the strong monotonicity of the threshold-discrete Prandtl-Ishlinskii

superposition operator the inverse operator is also strongly monotonous and thus the

transformed weights fulfil also the linear inequality constraints

U w u 0S S S⋅ ′ − ≤ .   (21)
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The transformation laws rS′ = ΩΩΩΩS(rS ,wS) for the thresholds and wS′ = ΞΞΞΞS(wS) for the weights

correspond to the transformation laws of the threshold-discrete Prandtl-Ishlinskii hysteresis

operator in a specific manner. For the positive branch  follows

′ − =
=
∑r w r r i lSi Sj
j

i

Si Sj= ( )   ;     .  .  
0

0   (22)

and

′ =w
wS

S
0

0

1
 and ′ = −

+ +
=

= =

−

∑ ∑
w

w

w w w w
i lSi

Si

S Sj
j

i

S Sj
j

i

( )( )
   ;     .  .  

0
1

0
1

1 1 .   (23)

and for the negative branch follows

′ − = −
=

∑r w r r i lSi Sj
j i

Si Sj= ( )   ;     .  .  
0

0   (24)

and

′ =w
wS

S
0

0

1
 and ′ = −

+ +
= −

=

−

= +

−

∑ ∑
w

w

w w w w
i lSi

Si

S Sj
j i

S Sj
j i

( )( )
   ;     .  .  -

0

1

0
1

1 1.   (25)

The Prandtl-Ishlinskii superposition operator provided with the inequality constraints (19) for

the weights has also the properties 2 and 3 of the Prandtl-Ishlinskii hysteresis operator. But in

contrast to the Prandtl-Ishlinskii hysteresis operator the inequality constraints (19) permits

also output-input trajectories which are not convex and not odd symmetrically.

4 A Modified Prandtl-Ishlinskii Modeling and Compensation Approach

As mentioned at the end of the second section an intuitive idea to overcome the modeling

restriction due to the convexity and odd symmetry property of the threshold-discrete Prandtl-

Ishlinskii hysteresis operator is to combine the threshold-discrete Prandtl-Ishlinskii hysteresis

operator and the threshold-discrete Prandtl-Ishlinskii superposition operator in series.
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4.1 Modeling and Compensation

This leads to the so-called modified threshold-discrete Prandtl-Ishlinskii hysteresis operator

which is mathematically described by

Γ [ ]( ) : [ [ , ]]( )x t x tS
T

H
T

HS H
==== ⋅⋅⋅⋅ ⋅⋅⋅⋅w S w H zr r 0 .   (26)

The inverse modified threshold-discrete Prandtl-Ishlinskii hysteresis operator can be easily

obtained by the inversion of the threshold-discrete Prandtl-Ishlinskii hysteresis operator and

the threshold-discrete Prandtl-Ishlinskii superposition operator and an exchange of their order.

From this follows

Γ −
′ ′= ′ ⋅ ′ ⋅ ′1

0[ ]( ) [ [ ], ]( )y t y tH
T

S
T

HH S
w H w S zr r .   (27)

4.2 Identification

The identification procedure which is used to adapt the model to the real hysteretic

nonlinearity or to adapt the compensator to the inverse hysteretic nonlinearity is divided into

three parts. In the first part the absolute maximum value of the measured input signal and the

maximum and minimum value of the measured output signal are determined. With these

values the thresholds rH and the initial states zH0 of the Prandtl-Ishlinskii hysteresis operator

and the thresholds rS′ of the inverse Prandtl-Ishlinskii superposition operator are determined

by the formulas

r
i

n
x t

i

n
x i nHi

t t te

=
+ +

=
≤ ≤ ∞1 1

0
0

max{| ( )|} =   ;     .  .  ,   (28)

′′′′ ====rS 0 0,   (29)

′′′′ ====
−−−−

====
≤≤≤≤ ≤≤≤≤

r
i

l
y t i lSi

t t te

( )
max{ ( )}   ;     .  .  

1
2

0

1 ,   (30)

′′′′ ====
++++

==== −−−− −−−−
≤≤≤≤ ≤≤≤≤

r
i

l
y t i lSi

t t te

( )
min{ ( )}   ;     .  .  

1
2

0
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and
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z i nH i0 0 0= =   ;     .  .  .   (32)

In this case (32) assumes the start of the hysteretic state evolution from the so-called

demagnetized state. The identification of the weights wH and wS′ of the Prandtl-Ishlinskii

hysteresis operator and the inverse Prandtl-Ishlinskii superposition operator which is the

object of the second part can be formulated as an L2
2-norm minimization of the so-called

generalized error model

(((( ))))E x y t
x t

y tH
T

S
T HH

S

[ , ]( ) :
[ , ]]( )

[ ]]( )
==== ′′′′ ⋅⋅⋅⋅ −−−−











′′′′
w w

H z

S
r

r

0
  (33)

which is linear dependent on the weights. This leads to the quadratic optimization problem

( ) ( )min{
[ , ]]( )

[ ]]( )
 [ , ]]( ) [ ]]( ) d }w w

H z

S
H z S

w

w
r

r
r rH

T
S

T H

H
T T

t

t
H

S

H

S

H S

e x t

y t
x t y t t′ −







 −

′








′
′∫ 0

0

0

   (34)

with the linear inequality constraints

U O

O U

w

w
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u

o

o
H

S

H

S

H

S









 ⋅⋅⋅⋅

′′′′








 −−−−









 ≤≤≤≤









  .   (35)

This minimization problem is overdetermined with one degree of freedom because the

elementary operators Hr rH
H ====0

 and Sr rS
S

′′′′ ′′′′ ====0
 are both equal to the identity operator I. The

additional linear equality constraint

( )( )x xH
T T H

S
∞ ∞⋅ − ⋅

′






 − =i r o

w

w
0    (36)

with the unity vector iT = (1 1 . . 1) deletes this degree of freedom and ensures the unique

solvability of the quadratic minimization problem. This linear equality constraint leads to an

amplitude range invariance property of the corresponding Prandtl-Ishlinskii hysteresis

operator. Thus the mapping of the input amplitude range to the output amplitude range is only

determined by the corresponding Prandtl-Ishlinskii superposition operator.
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For the identification of the modified threshold-discrete Prandtl-Ishlinskii hysteresis operator

the thresholds rS and the weights wS of the Prandtl-Ishlinskii superposition operator are

calculated in the third part from the thresholds rS′ and the weights wS′ of the inverse Prandtl-

Ishlinskii superposition operator by the given corresponding weight- and threshold

transformation laws

r r wS S S= ′ ′ΩΩΩΩ ( , )

and

w wS S= ′ΞΞΞΞ ( )

which are decribed by (22) - (25) in detail. In contrast to the identification of the modified

threshold-discrete Prandtl-Ishlinskii hysteresis operator the identification of the inverse

modified threshold-discrete Prandtl-Ishlinskii hysteresis operator requires the thresholds rH′,

the weights wH′ and the initial states zH0′ of the inverse Prandtl-Ishlinskii hysteresis operator.

They are calculated from the thresholds rH, the weights wH and the initial states zH0 of the

Prandtl-Ishlinskii hysteresis operator by the given corresponding weight-, threshold- and

initial state transformation laws

′ =r r wH H H HΩΩΩΩ ( , ),

′ =w wH H HΞΞΞΞ ( )

and

′ =z z wH H H H0 0ΨΨΨΨ ( , )

which are decribed by (12) - (14) in detail. The inequality constraints (35) guarantee in the

same way as the inequality constraints (8) for the Prandtl-Ishlinskii modeling approach the

best L2
2-norm minimization in that space of the weights which leads to invertible threshold-

discrete Prandtl-Ishlinskii hysteresis and superposition operators. Therefore the invertibility of

the modified threshold-discrete Prandtl-Ishlinskii hysteresis operator is always guaranteed

during the optimization and thus the design process for the model or the compensator is
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consistent and robust against unknown measurement errors of input-output data, unknown

model errors and unknown model orders. Thus the modified Prandtl-Ishlinskii modeling

approach leads to an extension of the Prandtl-Ishlinskii modeling approach which permits the

consistent modeling, identification and compensation of invertible complex hysteretic

nonlinearities which have non convex increasing branches and non odd symmetrical loops.

The implementation of the described identification scheme uses a numerical solver for

quadratic optimization problems with linear inequality and equality constraints. Such

problems are well known as quadratic programs and are standard problems in the

mathematical optimization theory. They are discussed with neccessary detail in the

optimization literature [11]. Therefore the presentation of a explicit scheme for the solution of

quadratic programs is beyond the scope of this paper.

5 Application to a Magnetostrictive Actuator

In this section the performance of the presented compensator design method for complex

hysteretic nonlinearities will now be demonstrated by means of the displacement-current

relation of a magnetostrictive transducer. Fig. 7 shows the typical major and minor butterfly

loops of a magnetostrictive transducer if it is driven with current amplitudes of ± 2 A and a

typical pre-force of 500 N.

To get a strongly monotonous relation between the displacement and current the

magnetostrictive transducer is normally used with an additional bias current. The bias current

which amounts to 1 A in this example determines together with the pre-force of 500 N the

operating point of the magnetostrictive actuator. The electrical operating range is

characterized by the grey area in Fig. 7 and amounts to 1 A ± 0,8 A. Thus we have a safety

range of about 20 % to current ranges with a non monotonous displacement-current relation.

Fig. 8 shows the strongly monotonous hysteretic displacement-current relation of the
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magnetostrictive actuator in the operating range. It is mainly characterized by non convex

increasing branches and asymmetrical hysteretic loops with a counterclockwise orientation.

Therefore the modeling, identification and compensation of this real complex hysteretic

nonlinearity cannot be realized with the conventional Prandtl-Ishlinskii approach but requires

the extensions introduced by the modified Prandtl-Ishlinskii approach.

Fig. 9 shows the looping and branching behaviour of the modified threshold-discrete Prandtl-

Ishlinskii hysteresis operator with different model orders n and l as a result of the

identification procedure. The model order n = 0 and l = 0 leads to a linear rate-independent

operator model and thus the identification procedure determines the best linear L2
2-norm

approximation of the real hysteretic nonlinearity. The nonlinearity error defined by

max{ [ ]( ) ( )}

max{ [ ]( )}
t t t

t t t

e

e

I t s t

I t
0

0

≤ ≤

≤ ≤

−Γ

Γ
  (37)

amounts in this case up to 48,72 %. Increasing the model order to n = 4 and l = 2 leads to a

much better piecewise linear approximation of the major loop, but due to the low model order

no branching occurs within the hysteretic region. The nonlinearity error is in this case reduced

to 6,33 %. Increasing of the model order further to n = 8 and l = 4 the modified threshold-

discrete Prandtl-Ishlinskii hysteresis operator is also able to approximate the minor loops with

a higher accuracy. But also in this case the approximation of the real hysteretic nonlinearity

with piecewise linear branches is visible. The nonlinearity error is in this case further reduced

to 3,38 %. Finally a modified threshold-discrete Prandtl-Ishlinskii operator with a model order

of n = 14 and l = 7 leads also to a sufficiently smooth approximation of the minor loops. The

nonlinearity error amounts in this case to 2,61 % which is nearly twenty times smaller than for

the best linear L2
2-norm approximation. Due to small unknown measurement and model errors

a further increasing of the model order n and l don’t reduce significantly the nonlinearity error.

A general procedure for the user to obtain the right model complexity for a given complex
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hysteretic nonlinearity works with the strategy decribed before. Starting with a low model

order, for example n = 0 and l = 0, the model order is increased sucessively until the defined

nonlinearity error (37) saturates in dependence on the model order.

For the compensation of the real hysteretic nonlinearity a feedforward controller is used which

is based on the inverse modified threshold-discrete Prandtl-Ishlinskii hysteresis operator, see

Fig. 10. sc(t) is the given displacement signal value.

The inverse modified threshold-discrete Prandtl-Ishlinskii hysteresis operator is obtained from

the modified threshold-discrete Prandtl-Ishlinskii hysteresis operator with the model order of

n = 14 and l = 7 using the transformation laws for the thresholds, weights and initial states.

It is realized by a digital signal processor with a sampling rate of up to 10 kHz and a

displacement controlled current source. The looping and branching characteristic of the

inverse modified threshold-discrete Prandtl-Ishlinskii hysteresis operator is shown in Fig. 11.

As a final result Fig. 12 shows the compensated characteristic of the overall system given by

the serial combination of the inverse feedforward controller and the magnetostrictive actuator.

The input signal range for the compensator corresponds to the output signal range of the

actuator. Tn this example the control error defined by

max{ ( ) ( )}

max{ ( )}

c

c

t t t

t t t

e

e

s t s t

s t
0

0

≤ ≤

≤ ≤

−
  (38)

will be strongly reduced to about 3 % due to the inverse feedforward control strategy.

6 Conclusions

The main contribution of this paper is to extend the Prandtl-Ishlinskii approach for the

modeling, identification and compensation of complex hysteretic nonlinearities with convex

branches and symmetrical hysteresis loops to a so-called modified Prandtl-Ishlinskii approach
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for the modeling, identification and compensation of complex hysteretic nonlinearities with

non convex branches and asymmetrical hysteresis loops. For this purpose a modified Prandtl-

Ishlinskii hysteresis operator is defined by the serial combination of a conventional Prandtl-

Ishlinskii hysteresis operator and a memory-free nonlinearity with an asymmetrical graph.

Based on this modeling method a robust compensator design procedure for invertible complex

hysteretic nonlinearities is developed. Finally, the compensator design method is used to

generate an inverse feedforward controller for a magnetostrictive actuator. In comparison to

the conventional controlled magnetostrictive actuator the nonlinearity error of the inverse

controlled magnetostrictive actuator is lowered from about 50 % to about 3 %.

In future works the modified Prandtl-Ishlinskii Modeling, Identification and Compensation

approach for complex hysteretic nonlinearities will be extended to rate-dependent creep

processes which play an important role especially in wideband applications of piezoelectric

actuators.
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Fig. 1: Complex hysteretic nonlinearity

Fig. 2: Rate-independent characteristic of the play operator

Fig. 3: Initial loading curve and generator function ϕ (rH)

Fig. 4: Generator functions ϕ (rH) and ϕ′(rH′)

Fig. 5: Rate-independent characteristic of the one-sided dead-zone operator

Fig. 6: Positive and negative branch and generator functions

Fig. 7: Butterfly-loops of a magnetostrictive transducer

Fig. 8: Measured hysteretic displacement-current relation in the operating range

Fig. 9: Modeled hysteretic displacement-current relation in the operating range

Fig. 10: Compensation of the hysteretic nonlinearitiy by an inverse feedforward controller

Fig. 11: Inverted hysteretic displacement-current relation in the operating range

Fig. 12: Compensated hysteretic displacement-current relation in the operating range


