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This paper describes a robust active vibration control approach for distributed
piezoelectric ceramic patches used as actuators and sensors. A number of sym-
metrically spaced ceramics have been affixed to a beam where they can perform
two different tasks. First, the structural behavior is identified with the help of
the ceramics. Second, the grid-array is used for control purposes, the function-
ality of a patch as an actuator or a sensor being able to change depending on
the operating and boundary conditions of the structure. The central focus of
the paper is on the applied control approach, which is a robust linear quadratic
Gaussian (LQG) control. The uncertainties against which the control approach
is robust are parameter uncertainties and spillover.

1 Introduction

Active vibration control plays an increasingly important role in research
and industry as more and more lightweight structures are used with the
disadvantage of more pronounced vibrations. Induced strain elements,
like piezoelectric ceramics as actuators and/or sensors are described in
several papers e.g. [4, 7] to be effective for the design of active vibration
control. Mainly two approaches have been followed to build the models,
namely continuous closed-formulations e.g. [2, 3] and discrete Finite El-
ement Method (FEM) solutions e.g. [6] and often state-feedback control
laws have been applied.

In the present paper a different approach is presented. Several ce-
ramic patches are assumed to be bonded onto a structure with a certain,
but not exact knowledge of the structural dynamics. The frequency re-
sponse between every patch is determined in a first step by using one
patch as actuator to excite the structure and the others to measure the
response.

The same grid array is also used for control purposes, and the func-
tionality of a patch as an actuator or a sensor is defined with an optimiza-
tion criterion. Each ceramic can serve as an actuator or a sensor or can
even combine both functions at the same time [5]. A major advantage of
this smart structure concept is that it can rearrange its actuator-sensor
configuration on-line if the system characteristics change. In order to



face parameter uncertainties within the model, a robust linear quadratic
Gaussian (LQG) control synthesis procedure is applied which is based
on a pair of algebraic Riccati equations arising in risk-sensitive optimal
control [8]. This leads to a controller which guarantees a certain upper
bound on the time-averaged performance of the closed-loop stochastic
uncertain system.

2 Experimental setup

The experimental setup consists of an aluminium beam with the dimen-
sions according to Figure 1. It is clamped at both ends and the ceramics

Fig. 1: Clamped beam with bonded piezoelectric ceramics

are glued onto one side. Patches 1-4 can be used for control, and piezo
number 5 is used to create a disturbance. The small strips of piezo-
ceramic are intended for the investigation of nearly-collocated actuators
and sensors. The ceramic properties are shown in Table 1. Different
boundary conditions can be studied with this setup: either rigid clamp-
ing without rubber mounts, or soft clamping with the use of a rubber
mount.

Ceramic Size (WxLxT) Material Collocated Size (WxLxT) Material
[mm3] sensor [mm3]

1, 2, 4, 5 29.7 x 29.7 x 1.0 PIC 151 1, 2, 3, 4 2.5 x 20.0 x 1.0 PK11
3 20.0 x 40.0 x 1.5 PIC 151

Table 1: Dimensions and material of the applied ceramics



3 Identification

In the first step, before the controller can be designed, the patches were
used to identify the structural behaviour and to construct a model. In
order to perform this experimental modal model identification, a band-
limited white noise signal is applied to a selected patch which is used as
an actuator and the response is measured at the other patches. With
the calculated frequency responses [10] a model of the pole/residue form
(1) is established
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Rj and R̄j are the (complex conjugate) residue matrices, λj and λ̄j are
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to account for neglected high-frequency modes. For control purposes
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Ω2 = diag(f2
modal) is the modal stiffness matrix, formed by the modal

frequencies. Γ is the modal damping matrix and I is the identity matrix.
ΨT

b is the modal input matrix, formed by the modal input vectors and
Ψc is the modal output matrix, composed of the modal output vectors.
x(t) is the vector of modal displacements, u(t) is the vector of inputs
and y(t) is the vector of outputs. The state-space model (2) is the basis
for the controller design.

4 Selection of actuators and sensors

The ability of an actuator to suppress a mode and that of a sensor to
detect a mode depends on its position in relation to the nodes and antin-
odes of the mode. The residues of the frequency responses between two
patches are a measure for the efficiency of this actuator-sensor combina-
tion. In order to penalize modes with small residues, which means that
this combination cannot actuate or sense a mode, a performance index
is calculated as the product of the norm of the residues, normalized by



its maximum value Rj,max over all actuator-sensor combinations. This
leads to a performance matrix P with the elements

P(m, p) =
∏

j

|Rj(m, p)|
Rj,max

m : 1. . .nPa,
p : 1. . .nPa,
j : 1. . .nMo.

(3)

nPa indicates the total number of ceramics applied to the beam and nMo

indicates the total number of modes which should be considered. The
best choice for an actuator-sensor combination is the maximum value of
all elements of P: PBest = max(P(m, p)). The evaluation of equation (3)
for the beam with the boundary conditions ’rigid-clamping’ shows that
the combination ’actuator 1, sensor 1’ has the maximum performance.
For the non-collocated case the combination ’actuator 4, sensor 1’ is the
best choice. This result is obvious for the clamped beam, because the
patches 1 and 4 are located near the ends and can sense and actuate all
modes in the considered frequency range. Further results can be found in
[9]. After the structure is identified and an actuator-sensor configuration
is selected, the robust control can be designed.

5 Robust control of uncertain systems

An important class of uncertain system models involves separating the
nominal system model from the uncertainty in the system in a feedback
interconnection and is shown in Figure 2. The uncertainty ∆ is typi-
cally a quantity which is unknown but bounded in magnitude. In order

Fig. 2: Uncertain system with noise inputs w(t)

to define the minimax LQG control problem, the following stochastic
uncertain system is defined in terms of a stochastic state equation

dx(t) = (Ax(t) + B1u(t) + B2ξ(t))dt + B2w(t)dt, x(0) = x0,

z(t) = C1x(t) + D1u(t), (4)
dy(t) = (C2x(t) + D2ξ(t))dt + D2w(t)dt, y(0) = 0.



where ξ(·) is a stochastic process and w(·) is a Wiener process. u(t) is the
control input, y(t) is the measured output and the matrices A,B1,B2,
C1,C2,D1,D2 are matrices of suitable dimensions and depend on the
considered uncertainty. The class of admissible uncertain probability
measures is defined in [8] and encompasses many important classes of
uncertainty arising in control systems e.g. the standard norm-bounded
uncertainty constraint, or the H∞ norm-bounded uncertainty descrip-
tion.

In the minimax optimal control to be considered, attention will be
restricted to the following linear output-feedback controller of the form

dxc(t) = Acxc(t)dt + Bcdy(t) (5)
u(t) = Kxc(t).

y(t) is the measured input, u(t) is the control output and xc is the state
of the controller. For the optimal control the following cost functional
J(·) is considered

J(u(·), ζ(·)) = lim sup
T→∞

1
2T

EQT

∫ T

0
F (x(t), u(t))dt, (6)

F (x, u) = x′Rx + u′Gu.

EQT
is the expectation with respect to the probability measure QT , cor-

responding to the set of martingales ζ, see [8], and R,G are weighting
matrices. The minimax optimal control problem is to find a controller
of the form (5) which minimizes the worst case value of the cost func-
tional (6) in the face of uncertainty. The solution of the infinite horizon
LQG control problem is given by the following two parameter-dependent
algebraic Riccati equations
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with Γ = D2D′
2 > 0, Rτ = R + τC′

1C1, Gτ = G + τD′
1D1 and Υτ =

τC′
1D1. For the solution of (7) and (8) the following must be fulfilled:

The pair ((A−B2D′
2Γ

−1C2), (B2(I−D′
2Γ

−1D2))) is stabilizable and for
a constant τ > 0 the matrix Y∞ is positive-definite, X∞ is nonnegative-
definite and (I − 1

τ Y∞X∞) has only positive eigenvalues. Then the



optimal risk-sensitive controller is a controller of the form (5) with
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The constant τ > 0 is chosen, such that inf
τ
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(10)

It is shown in [8] that this controller is an absolutely stabilizing controller
for the stochastic uncertain system and guarantees an upper bound on
the cost functional (6).

6 Application of the robust control synthesis procedure

Two different kinds of uncertainties are considered in the following and
the controller design is shown, based on the results of the section above.
First, neglected higher frequency-dynamics (NHFD) and then model er-
rors (ME) will be considered. The first uncertainty will be realized by a
frequency weighted multiplicative uncertainty as shown in Figure 3.

Fig. 3: Uncertain system for neglected higher
frequency-dynamics

The true transfer function P∆ is assumed to be

P∆(s) =
y

u
= P (s)[1 + ∆(s)W (s)], (11)

where P (s) is the nominal transfer function, W (s) is a suitable weighting
transfer function and ∆(s) is an uncertain transfer function satisfying



the H∞ norm bound. Hence it follows
∣∣∣∣
P∆(jω)− P (jω)

P (jω)

∣∣∣∣ ≤ |W (jω)| . (12)

Figure 4 shows an example of the realization of (12). The function
W (jω) was chosen to consist of a 4th-order Tschebycheff high-pass filter,
added to a 4th-order low-pass Bessel-filter, in order to smooth the low-
frequency response. One can see in Figure 4 that condition (12) is not
fulfilled at all frequencies, but it was found in practice, that this is
unnecessary in order to obtain the required level of robustness. The

Fig. 4: Multiplicative uncertainty bound

stochastic uncertain system (4) which must be built for the controller
design is obtained from a state-space realization of the transfer function
P (s) augmented with the transfer function W (s).

The second uncertainty to be considered are model errors. In this
respect the following will be assumed. Consider an uncertain element f
of the nominal state-space matrices (13)

[
ẋ
y

]
=

[
A B
C D

] [
x
u

]
, (13)

with the error model

f = f0(1 + b0δ), −1 < δ < +1 (14)
∆ = δI.

Each uncertain element of the matrices A,B,C or D leads to an ad-
ditional uncertainty input/output and the system matrix (13) must be



extended as follows. The nominal element will be f0 and the diagonal
will be extended with zero, belonging to one additional uncertainty in-
put/output. The element in the row of the nominal element and the
column of the extended input is f0. The element in the column of the
nominal element and the row of the extension is b0. An example for an
uncertain element in the matrix A is shown in equation (15):
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(15)

If we assume that only the modal-frequency and damping in the matrix
A are uncertain, we obtain the following matrices for equation (4)

B1 := B, B2 := [0 . . . b0,i . . . 0]′ , C2 := C, (16)

C1 := [0 . . . f0,i . . . 0] , D1 := 0

These matrices will be used for the calculation of a robust controller as
indicated in section 5, which is robust against parameter uncertainties.

7 Results

In the following some results for the above calculated controllers are
presented. Figures 5 and 6 illustrate the active vibration suppression
which has been achieved with the robust LQG control. Figure 5 shows
the power spectrum of the sensor voltage measured at ceramic 2 for two
different actuator/sensor combinations and the application of NHFD
uncertainty. The boundary conditions were ’rigid clamping on both ends’
and the first six modes were identified for the model. One can see that no
spillover occurs, which was the objective of this uncertainty description.
The achievable suppression depends heavily on the weighting transfer
function and the matrices R and G in the cost functional (6). Figure
6 shows some results for the application of ME uncertainty and the use
of actuator 1/sensor 1 for control. A maximum error of 5% (b0 = 0.05)
for each identified modal frequency and each modal damping ratio was
assumed, which leads to twelve uncertainty inputs/outputs. Figure 6
a) shows some results for a model error of -5% and Figure 6 b) the
results for a model error of +5%. The damping is good for the first six



Fig. 5: Power spectrum of the voltage at ceramic 2; NHFD uncertainty.
a) Actuator 4, sensor 1, b) Actuator 1, collocated sensor

Fig. 6: Power spectrum of the voltage at ceramic 2; ME uncertainty,
Actuator 1, collocated sensor.
a) Model error -5%, b) Model error +5%

modes, but some spillover occurs in the higher frequency range. Again
the achievable suppression depends heavily on the matrices R and G in
the cost functional (6).

8 Summary

A robust LQG control which is robust against spillover or parameter
uncertainties has been successfully applied for the vibration control of
a beam. The control design has been demonstrated theoretically, and
the implementation of the specific uncertainties against spillover and
parameter errors have been shown. The model, which was used for
the controller design has been obtained with the help of piezoelectric
patches bonded onto the structure. Depending on the identified modal
characteristics of the structure different patches have been found to be
best suited as actuators and sensors.
Future work will concentrate on the simultaneous application of the
NHFD and ME uncertainties in order to achieve a robust control for
both uncertainties and the comparison with other control concepts.
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[7] Preumont, André: Active Structures for Vibration Suppressions
and Precision Pointing. In: Journal of Structural Control 2
(1995), June, Nr. 1, pp. 49–63

[8] Petersen, Ian R.; Ugrinovskii, Valery A.; Savkin, Andrey V.:
Robust Control Design Using H∞ Methods. Springer-Verlag Lon-
don Berlin Heidelberg, 2000

[9] Schwinn, A.; Janocha, H.: Self-Configurable Actuator-Sensor
Array for Active Vibration Suppression. Materialsweek 2000. Mu-
nich, Germany, September 2000

[10] Welch, P.D.: The Use of Fast Fourier Transform for the Estima-
tion of Power Spectra: A Method Based on Time Averaging Over
Short, Modified Periodograms. In: IEEE Trans. Audio Electro-
acoust. AU-15 (1967), June, pp. 70–73


