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This paper describes the use of distributed non–collocated piezoelectric patch actuators
and sensors for active vibration control. The usually applied method for the design of
an active vibration control is to describe first the modal behaviour of the structure and
then to place the actuators and sensors according to an optimization criterion. This may
lead to a non–optimal solution if the real system differs from the theoretical model and
must be performed for every system to be considered. The new concept presented in
this paper is to apply a number of piezoelectric ceramic patches onto a structure (e.g.
during a production process), without necessarily knowing the structural behaviour in
advance. This system is able to identify itself with the help of the ceramic patches and
the specific functionality of a patch as an actuator, a sensor or as inactive, is determined
according to a performance index. The major advantage of this smart structure is that
it can perform an updated system identification if the system characteristics change and
that it can choose a part of the ceramics as the best selection for actuators and sensors
out of the whole quantity of ceramic patches. First experiments were carried out for the
active vibration control of a beam with four piezoelectric patches bonded to it. Different
actuator/sensor configurations for varying boundary conditions were studied, and the
results are presented in this paper.

1 Introduction

The use of more and more lightweight structures for machines, vehicles etc. enforces the need for
efficient structural vibration control, which can be achieved with active control methods. The use
of induced strain elements, like piezoelectric ceramics or PVDF foils as actuators and/or sensors is
described in several papers e.g. [7, 12, 13] to be effective for the design of smart structures. In order
to achieve good results, an accurate model of the structure is needed. Mainly two approaches were
made to build the models, namely continuous closed-formulations and discrete Finite Element Method
solutions (FEM). Most of the continuous approaches [3, 4, 14] deal with simple structures, like beams
and plates with basic boundary conditions. The ceramics are assumed to be perfectly bonded to the
structure. This procedure prevents many practical implementations, where more complex structures
could occur. The FEM based approaches [6, 9] can handle more sophisticated configurations and the
results normally are accurate. But the models are in general very large and thus for the control a
reduced model must be obtained. For both the continuous and the discrete approaches one has to
know the physical properties of the structure in advance, in order to obtain a good model. This model
may be in practice not always exact, because the system can change with time, or due to deviating
boundary conditions. In order to optimize the control effect of the piezoelectric actuators, several
authors developed optimization procedures for the size and the positions of the ceramic patches
[2, 11]. This was accomplished for well–known structures under fixed boundary conditions.
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In the present paper a different approach to active vibration suppression is presented. It is
assumed that randomly placed ceramic patches were bonded onto a generally unknown structure.
The frequency response between every patch will be determined in a first step by using some patches
as actuators to excite the structure and others to measure the response, whereas each ceramic can
serve as actuator or as sensor. An approximation of the measured response in the pole/residue form
is made and with this a real parameter state–space model for the structure derived [1]. The applied
control law for the controller is a Linear Quadratic Regulator (LQR) with a full state observer
(Luenberger observer) [5, 8]. A performance index for the regulation is derived and used for the
best selection of actuators and sensors out of all ceramics. Only a part of all patches can be used
as actuators and sensors, because of limited computational and hardware capabilities. The results
are verified with the real system and the effect of changed boundary conditions on the regulation
performance and on the choice of actuators/sensors is studied in the last part of the paper.

2 Experimental setup

The experimental setup for verifying the applied method of vibration suppression consists of an
aluminium beam which is clamped at both ends, according to Figure 1. The patches are glued onto

Fig. 1: Clamped beam with attached piezoelectric ceramics.
The rubber mounts are used for the non–rigid cases.

one side of the beam with EPOXY E-solder 3021. Patches 1–4 can be used for control and piezo
number 5 will be used to create a disturbance. Next to each of the large patches, a small strip
of piezoelectric material is glued onto the beam. They will only be used to analyze the frequency
response of nearly collocated actuators and sensors and are not necessary for the proposed approach.
Three different boundary conditions will be studied: rigid clamping of the beam on both sides, or
rigid clamping on the right side and soft clamping with a rubber mount on the left side, and the other
way round. The actuator and sensor dimensions are shown in Table 1. The test setup according to
Figure 2 consists of 2nd–order Butterworth filters as reconstruction and antialiasing filters, the A/D–
D/A converters, a PC for the signal processing, high voltage amplifiers (±100 V) for the actuators
and a switching array to select the best combination out of all ceramics as sensors and actuators.

3 Identification

In order to perform the experimental modal model identification, a bandlimited white noise signal
is applied to one patch which serves in this case as actuator and the response is measured at the
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Ceramic Size (WxLxT) [mm3] Material Collocated Size (WxLxT) [mm3] Material
sensor

1 29.7 x 29.7 x 1.0 PIC 151 1 2.5 x 20.0 x 1.0 PK11
2 29.7 x 29.7 x 1.0 PIC 151 2 2.5 x 20.0 x 1.0 PK11
3 20.0 x 40.0 x 1.5 PIC 151 3 2.5 x 20.0 x 1.0 PK11
4 29.7 x 29.7 x 1.0 PIC 151 4 2.5 x 20.0 x 1.0 PK11
5 29.7 x 29.7 x 1.0 PIC 151

Table 1: Dimensions of the applied ceramics

Fig. 2: Experimental setup

other patches, which serve as sensors. It can be assumed that the system is linear, time–invariant
and reciprocal. Therefore only n measurements are necessary (n is the total number of large patches)
in order to calculate n2 frequency responses, including the collocated ones. The frequency responses
are calculated using Welch’s averaged periodogram method [10]. In order to compute the correct
mechanical response of the beam, the antialiasing and the reconstruction filters must be considered.

HMech(jω) =
HMeasure(jω)

A ∗HFilter(jω)
(1)

A is the total gain of the amplifier and the A/D–D/A converters. An example for a calculated
frequency response is shown in Figure 3. With this data, a model in the pole/residue (also called

Fig. 3: Frequency response between ceramic 1 and ceramic 4
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partial fraction expansion form) (2) is established

HModel(s) =
∑

j identified

(
Rj

s− λj

+
R̄j

s− λ̄j

) + E. (2)

Rj and R̄j are the (complex conjugate) residues matrices, λj and λ̄j are the (complex conjugate) poles
and E is a correction matrix in order to account for neglected high–frequency modes. The poles of
the identified model in Figure 3 are shown as dotted vertical lines. The model amplitude matches
the measured data well, only the phase shows a difference above 900 Hz, which is due to a phase
shift of 360◦. The agreement between the measured data and the identified model is the result of a
nonlinear least squares approximation of the measured data [1].
For control purposes one is interested in a linear state–space model of the form

ẋ(t) = Ax(t) + Bu(t) (3)

y(t) = Cx(t) + Du(t),

where x(t) are the states, u(t) the actuator voltages and y(t) the sensor signals.
In order to obtain this model, one has to decompose the residues Rj into a dyad formed of

a column vector ψ
jc
(the modal output), and a row vector ψT

jb
(the modal input). With this the

following bloc–diagonal state–space form is given.

(

ż(t)
z̈(t)

)

=

(

0 I
−Ω2 −Γ

) (

z(t)
ż(t)

)

+

(

0
ΨT

b

)

u(t) (4)

y(t) =
(

Ψc 0
)

(

z(t)
ż(t)

)

.

Ω2 = diag(f 2
modal) is the modal stiffness matrix, formed by the modal frequencies. Γ is the modal

damping matrix. ΨT
b is the modal input matrix, formed by the modal input vectors and Ψc is the

modal output matrix, composed of the modal output vectors. z(t) is the vector of modal displace-
ments and I is the identity matrix. The final system to be considered for the control is the series
of the identified mechanical system, the antialiasing and the reconstruction filters and is obtained
through an extension of the state–space model (4).

4 Optimal control

The objective of structural control is to suppress the vibrations resulting from an external disturbance
f(t). The state equation (3) can therefore be extended to

ẋ(t) = Ax(t) + Bu(t) + Bff(t) (5)

y(t) = Cx(t) + Du(t).

It is a major problem, that the overall displacement is not available for feedback. However, equation
(5) shows that the control objective can be expressed as a problem of minimizing the state vector
x(t) which is derived from the sensors. The feedback controller with the state observer is shown
in Figure 4. The controller design can be divided into two steps. First, assuming the full state is
available, an optimal state feedback gain matrix K is derived. In a second step, a state observer is
built, which estimates the states from the sensed output voltages. The idea of the optimal control is
to compute the control input
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Fig. 4: Feedback controller with state observer

u(t) = −Kx(t), (6)

such that the following quadratic cost functional is minimized

J =

∫

∞

0

(xT(t)Qx(t) + uT(t)Ru(t))dt, (7)

where Q and R are positive definite weighting matrices. The choice of Q and R is not unique and
important for the controller design. It was found, that a good choice for the matrices is

Q = α1C
T
optCopt + α2I (8)

R = I (9)

where Copt is the state–space matrix for the optimized sensor configuration, i.e. only those rows of the
complete C matrix were kept which belong to the selected sensor ceramics. I is the identity matrix
and α1, α2 are variables for the design of the controller. The minimization of the cost functional
leads to the problem of solving an algebraic Riccati equation which can be performed using standard
routines known from literature e.g. [5].
Since the state variables are not directly available for feedback, they have to be reconstructed by a
state observer. The estimated state x̂(t) is calculated from the control input u(t) and the output
error vector y(t) − ŷ(t) and the observer matrix L, using the state–space model of the plant

˙̂x(t) = Ax̂(t) + Bu(t) + L(y(t) − ŷ(t)) (10)

ŷ(t) = Cx̂(t) + Du(t).

The poles of the observer must be located left of the set of control poles, to ensure that the observer
algorithm is fast enough to track the states of the plant model. The observer poles were placed with
a pole placement technique [10]. An example of the pole distribution is shown in Figure 5.
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Fig. 5: Example of the pole map for the plant, the closed reg-
ulator loop and the observer. Actuator 4, sensor 1; boundary
conditions: rigid clamping–rigid clamping.

It can be theoretically shown, that the ideal LQR has a guaranteed phase margin of 60◦. In order
to preserve this property as much as possible, the phase lag of the antialiasing and the reconstruction
filter must be compensated through an extension of the state–space model of the beam. The whole
system therefore to be considered is the series of the mechanical system and the two filters. This
introduces four additional states because the filters are of second order.

5 Performance index

The ability of an actuator to suppress a mode and of a sensor to detect a mode depends on its
positions relative to the nodes and antinodes of the mode. The afore calculated residues specify
the magnitudes of the modes for the frequency responses. The residues of the frequency responses
between two patches are therefore a measure for the use of one ceramic of this combination as an
actuator and the other as a sensor. In order to penalize modes with small residues, which means that
this combination cannot actuate or sense this mode, the performance index will be calculated as the
product of the norm of the residues. This index must be specified for all possible combinations of
actuators and sensors, which leads a the performance matrix with the elements

P(m, p) =
∏

j identified

|Rj(m, p)|

Rj,max

m : 1. . . number of ceramics,
p : 1. . . number of ceramics,
j : 1. . . number of modes.

(11)

PBest = max (P(m, p)) (12)

Each residue value is normalized by its maximum value Rj,max over all actuator–sensor combinations.
The best choice for an actuator–sensor combination is the maximum value of all elements of P. An
example for the calculated performance matrix is given in Table 2. One can see that the combination
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Sensor
Actuator 1 2 3 4

1 3.88e-7 5.42e-9 8.68e-8 9.14e-8
2 1.36e-8 6.83e-9 9.77e-10 2.99e-11
3 8.69e-8 1.42e-9 5.16e-9 7.25e-9

4 1.93e-7 3.04e-9 5.63e-9 4.05e-9

Table 2: Performance matrix for the boundary con-
ditions ’rigid clamping on both ends’.

actuator 1, sensor 1 has the maximum performance. If the collocated cases were not considered than
the combination actuator 4, sensor 1 is the best combination. The result is obvious for this simple
case, because the patches 1 and 4 reside near both ends of the beam and can sense and actuate all
modes in the frequency range up to 2 kHz, since there are no nodes in this area.

6 Results

The results are verified with the help of the small ceramic strips, in order to measure also the response
at the location of the actuator. Figure 6 shows the power spectrum of the voltage for the choice of
patch 4 as actuator and patch 1 as sensor. The boundary conditions are ’rigid clamping on both
ends’. The spectrum can be significantly damped at the location of ceramic 1 and is slightly worse
at location 4, which is due to the fact, that the disturbance acts near ceramic 4. According to Table

Fig. 6: Combination: actuator 4, sensor 1, boundary conditions: ’rigid clamping on both ends’.
a) Power spectrum of the voltage at ceramic 1, b) Power spectrum of the voltage at ceramic 4.

2 the combination actuator 1/collocated sensor 1 is the best choice, although Figure 7 shows that
the measured power spectrum is not as good as the combination actuator 4/sensor 1. This could
be explained through local strain effects and was also observed for different experiments with nearly
collocated actuators/sensors. It is therefore more efficient to use non–collocated actuators/sensors.

Table 3 shows the calculated acuator/sensor combinations for different boundary conditions, ac-
cording to equation (11). Figure 8 shows the results for the boundary condition ’soft clamping–rigid
clamping’. The results for the boundary conditions ’rigid clamping–soft clamping’ are comparable
and will be omitted here for brevity.
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Boundary condition Actuator Sensor

Rigid–rigid 4 1
Soft–rigid 1 4
Rigid–soft 3 1

Table 3: Best actuator/sensor selections for
different boundary conditions.

Fig. 7: Combination: actuator 1, sensor 1, boundary conditions ’rigid clamping on both ends’.
a) Power spectrum of the voltage at ceramic 1, b) Power spectrum of the voltage at ceramic 4.

Fig. 8: Combination: actuator 1, sensor 4, boundary conditions ’soft clamping–rigid clamping’.
a) Power spectrum of the voltage at ceramic 1, b) Power spectrum of the voltage at ceramic 4.

7 Summary

The vibration control experiments performed in this work demonstrate the efficiency of a self–
configuring actuator–sensor array. It was shown that piezoelectric patches could be used to identify
the modal behaviour of a unknown structure, although the positions of the ceramics may be ran-
domly distributed over the surface. Depending of the identified modal characteristics of the structure
different combinations of patches were found to be best used as actuators and sensors. It was shown
that it may be necessary to change the selected choice, if the boundary conditions change. It is
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thus possible to react to time varying conditions or to use the same type of structure in different
applications, without the need of knowing the structural behaviour in advance.
Future work will concentrate on the implementation of an on–line identification technique for the
modal characteristics, the use of more robust and self–tuning controllers and the extension of the
performance index for the use of more than one actuator and sensor.
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