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Abstract 
An essential reason for the increasing interest in magnetostrictive materials is the capability to perform 
collocated and simultaneous sensing and actuation due to the inherent sensory capability of the material. 
This dual function predestines the material for application in mechatronic systems. Operating in this way 
these solid-state transducers are frequently called smart actuators. They favour a miniaturized, simpler 
and cheaper mechatronic system design and are therefore regarded as a key technology in the 21st 
century. The focus of the present paper is the realisation of a smart magnetostrictive actuator by sensing 
the variation of the magnetic flux in the material. For this purpose, a hall sensor has been integrated into 
the casing of the magnetostrictive actuator. A central task of the smart magnetostrictive actuator is the 
separation of the sensing information from the actuation information contained in the magnetic flux 
measurement signal. In practice, however, due to the high input amplitudes undesired complex hysteresis 
and saturation nonlinearities appear making a separation of sensing information from actuation 
information impossible with linear actuator models. In this article a novel control and signal processing 
method based on hysteresis and superposition operators is applied to the smart magnetostrictive 
actuator. This method allows the compensation of these simultaneously occuring nonlinearities in real-
time and with it a linearisation and decoupling of sensor and actuator operation. 
 
1 Introduction 
Rods of magnetostrictive materials have been found in industrial use in the form of actuators for many 
years due to their ability to convert electrical into mechanical energy. As shown in Figure 1 a coil is 
located around the rod which produces the necessary magnetic field for actuation operation. For a 
defined field production and field reduction the coil is driven with a given driving current I. 

 
Figure 1: Principle structure of a magnetostrictive actuator 

 
Due to the magnetostrictive effect in the material the rod produces a displacement against the 
surrounding mechanical structure. Magnetically the rod reacts with a current-dependent variation of its 
magnetic flux. Due to the current-dependent displacement the surrounding mechanical structure reacts 
with a force F against the rod. Beside the current-dependent displacement and magnetic flux variation, 
this force produces an additional force-dependent displacement due to the elasticity of the material and 
an additional force-dependent magnetic flux variation due to the so-called Villary effect. The latter effect is 
the cause for the inherent sensory capability of the magnetostrictive material. So far, the separation of the 
sensing information from the actuation information which is necessary for the realisation of a smart 
actuator was based on linear actuator models [PF93]. In practice, however, due to the high input 
amplitudes undesired complex hysteresis and saturation nonlinearities appear which make a separation 
of sensing information from actuation information impossible with linear actuator models. In [KJ02] a new 
control and signal processing method based on hysteresis and superposition operators was presented for 
a piezoelectric actuator which allows the compensation of these simultaneously occuring nonlinearities in 
real-time and with it a linearisation and decoupling of sensor and actuator operation. The goal of the 
present paper is to investigate whether this newly developed control and signal processing method is also 
well-suited to archive a smart actuator with magnetostrictive material. 
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2 Design and construction 
Due to the quite low permeability of about µr = 5…10 magnetostrictive materials are not effective flux 
guiding elements in the construction of a magnetostrictive actuator. In fact, the surrounding structure has 
to assure guiding and focussing of the magnetic field so normally highly permeable iron is used for flux 
guidance. The lower end of the magnetostrictive rod is a mechanical fix point while the upper end is 
axially freely movable. As shown in Figure 2 the upper part of the fixture is freely movable and attached to 
two metal membranes forming an elastic suspension. 

 
Figure 2: Magnetostrictive actuator with electrically generated magnetic bias field 

 
Magnetostrictive material is normally used with a magnetic bias and under mechanical prestress so that 
by changing the magnetic field the variation in length of the rod in this operating point is most significant. 
Working under these these conditions the magnetostrictive material is used at its best resulting in the 
most strain for a given excitation amplitude. The magnetic bias can be realised with permanent magnets 
or electromagnetically. When using the electromagnetic method the static field can be generated by 
adding a second coil or by overlaying an offset current in the dynamically used coil. With regard to the 
dynamic behaviour the generation of the magnetic operating point with two separate coils should be 
preferred allowing the magnetic field to be changed more rapidly because of the lower inductance of the 
coil. Another advantage of the electromagnetically approach is the easily changeable magnetic operating 
point.  
A special feature in the design of the presented actuator is a Hall sensor allowing measurement of the 
variation of magnetic flux with respect to the mechanical load and the electric current. If the actuator is 
operated in current-control mode, the magnetic flux in the magnetostrictive material represents the 
physical variable containing the sensor information. Therefore, quantitative knowledge about the flux is 
basic for the realisation of a smart magnetostrictive actuator. 
 
3 Operator-based control und signal processing concepts 
To generate worthy displacements in actuator operation the magnetostrictive rod is driven by magnetic 
field amplitudes which excite domain switching processes in the magnetostrictive material and thus 
produce hysteresis and saturation effects in the electromagnetic and actuator transfer characteristics. 
Additionally in actuator operation the magnetostrictive rod is exposed to mechanical load which leads to 
mechanically excited domain-switching processes and produces hysteresis and saturation effects also in 
the sensory and mechanical transfer characteristics. Moreover the hysteresis and saturation 
characteristic of the transfer paths with the current as input signal depends on the present mechanical 
load and vice versa. In principle the coupling about the inner domain-switching processes requires a 
mathematical modeling of the coupled system characteristics using vectorial hysteresis operators. But if 
we limit the electrical and mechanical input signals to amplitude ranges for which the dependence of 
electromagnetic and actuator hysteresis on the mechanical load and the dependence sensory and 
mechanical hysteresis on the driving current is negligible the vectorial hysteresis operators can be 
replaced in a first-order approximation by a linear superposition of scalar hysteresis operators. From this 
point of view follows the operator sensor equation  
(1)  ( ) [ ]( ) [ ]( )E St I t F tφ Γ Γ= +  
and the operator actuator equation 
(2)  ( ) [ ]( ) [ ]( )A Ms t I t F tΓ Γ= + . 
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The transfer paths in the sensor equation (1) and the actuator equation (2) can be modelled in a 
sufficiently precise way by so-called modified Prandtl-Ishlinskii hysteresis operator [Kuh03]. The 
identification of the modified Prandtl-Ishlinskii hysteresis operators with measured input-output data of the 
corresponding transfer paths is carried out using a computer with a special model and compensator 
synthesis procedure, which is explained in detail together with the foundations of the modified Prandtl-
Ishlinskii approach in [Kuh01] and [Kuh03].  
For the magnetostrictive actuator introduced in chapter 2 the electrical range of validity of the models (1) 
and (2) is about 40% of the electrical full amplitude range and amounts to about ± 0.5 A at an electrical 
operating point of 1.25 A. The mechanical range of validity is about 50% of the mechanical full amplitude 
range and amounts to about ±100 N at a mechanical operating point of -500 N. The mechanical full 
amplitude range is defined in the present example as the force amplitude which compensates the current-
dependent displacement of the actuator produced by maximum current amplitudes of ± 1.25 A. This force 
is called the clamping force of the actuator and amounts to ±200 N in the given operating point. Figures 
3a-d show the measured hysteresis characteristics of the actuator, electromagnetic, sensory and 
mechanical transfer paths as a grey line and the corresponding modified Prandtl-Ishlinskii hysteresis 
operators ΓA, ΓE, ΓS and ΓM as a black line. In contrast to the characteristics of the operator models, 
Figures 3a-d show the characteristics of the best linear approximations as dashed lines. A comparison of 
the relative model errors of the diffferent transfer paths, defined by  
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leads to the results in Table 1. 
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Figure 3: Hysteresis characteristics of the magnetostrictive actuator in the operating point for limited 

driving and loading amplitude ranges 
 
The results show a reduction of the relative model error of the operator models of about one order of 
magnitude in comparison to the relative model error of the best linear approximations.   
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Table 1: Relative model errors eyx of the operator models and the corresponding best linear models 
 
Following the procedure in [KJ02] we can derive an operator-based controller concept for the 
magnetostrictive actuator in the limited driving and loading range which compensates the hysteresis and 
saturation effects in the actuator transfer path. For this purpose, we augment the magnetostrictive 
actuator with a compensation filter which fulfils the operator equation  
(4)  1( ) [ ]( )A cI t s tΓ −= . 
To obtain information about the real displacement s of the magnetostrictive rod during actuator operation 
the electrical current I and the magnetic flux variation ∆φ are measured. The goal is the reconstruction of 
the present displacement only with these measurement values and without using an external 
displacement sensor. The corresponding reconstruction filter can be derived by resolving the operator-
based sensor equation (1) and integrating the result into the operator-based actuator equation (2). From 
this follows the reconstruction filter equation  
(5)  1

A( ) [ ]( ) [ [ [ ]]]( )rec M S Es t I t I tΓ Γ Γ φ Γ−= + − . 
Figure 4 shows the signal flow chart of the combined control and signal processing concept. 
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Figure 4: Inverse feed forward controller with reconstruction of the rod displacement 

 
4 Control and reconstruction results 
To show quantitatively the performance of the inverse feed forward controller with displacement 
reconstruction as shown in Figure 4, the system of Figure 4 is driven with a given displacement signal sc 
traced in Figure 5a. 
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Figure 5: Driving and loading signals: a) Given displacement sc(t), b) Loading force F(t) 

 
Figure 6a shows in grey the s-sc trajectory of the system in the case that the inverse operator ΓA

-1 is 
based on the best linear approximation for the actuator transfer path and the magnetostrictive actuator is 
mechanically unloaded. As expected the I-sc trajectory of the inverse operator ΓA

-1 shown in Figure 6b as 
a grey line has a linear characteristic. Thus the s-sc trajectory of the complete system shows the 

Model error eφI esI eφF esF 
Linear model 10.47% 25.03% 20.99% 13.34% 
Operator model 1.19% 1.94% 2.94% 1.82% 
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hysteretic and saturated characteristic of the actuator transfer path of the magnetostrictive actuator. The 
relative control error, defined as 
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amounts to 25.6% in this case. Figure 6a shows in black the s-sc trajectory of the system for the operator-
based model of the actuator transfer path. In this case the I-sc trajectory of the inverse operator ΓA

-1 is 
represented by the characteristic shown in Figure 6b as a black line. As a result of augmenting the 
inverse operator ΓA

-1 to the actuator transfer path the s-sc trajectory of the system in Figure 4 displays an 
extensively hysteresis and saturation free characteristic. The compensation effect of the filter results in a 
relative control error of about 4.6%. 
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Figure 6: Linear (grey) und operator-based (black) inverse controller without loading force: 

a) s-sc trajectory, b) I-sc trajectory 
 
Figure 7a displays the s-sc trajectory of the system in case of a linear feed forward control as a grey line 
and the operator-based inverse feed forward control as a black line under additional mechanical load as 
presented in Figure 5b. Due to the finite stiffness of the magnetostrictive actuator, mechanical forces 
cause an additional displacement so the difference between the real s-scoll trajectory and the ideal s-sc 
trajectory becomes significant and in consequence, the relative control error increases to 135.7% in the 
linear control mode and 123.5% in the operator-based control mode.  
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Figure 7: a) Inverse linear (grey) and operator-based (black) controller with loading force:s-scoll 

trajectory, 
b) Performance of the linear (grey) and operator-based (black) reconstruction filter for  
the displacement: srec-s trajectory  

 
Nevertheless, the additional compensation of the mechanical load-dependence of the actuator 
displacement is feasible by using the reconstructed actuator displacement srec in a proper feedback loop. 
Figure 6b displays the result of the displacement reconstruction with a linear reconstruction model as a 
grey line and the result of the displacement reconstruction with an operator-based reconstruction model 
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as a black line for the driving signal shown in Figure 5a and the loading signal shown in Figure 5b as a 
srec-s trajectory. The relative reconstruction error, defined as 
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amounts to 25.9% for the linear reconstruction model and 7.3% for the operator-based reconstruction 
model. 
 
5 Summary and prospects 
The present paper describes the realisation of a smart magnetostrictive actuator by sensing the variation 
of the magnetic flux in the material. For this purpose a Hall sensor is integrated into the casing of the 
magnetostrictive actuator. A central task of the smart magnetostrictive actuator – namely the separation 
of the sensing information from the actuation information contained in the magnetic flux measurement 
signal – is carried out using a novel control and signal processing method based on hysteresis and 
superposition operators. This method allows the compensation of the simultaneously occuring hysteresis 
and saturation effects in the characteristic of the magnetostrictive material in real-time and with it an 
extensive linearisation and decoupling of sensor and actuator operation. Especially the high-quality 
displacement reconstruction allows in future works the implementation of a smart displacement feedback 
controller for the additional compensation of force-dependent variations of the displacement due to the 
finite stiffness of the magnetostrictive material. 
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