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Abstract:
The present paper will describe an approach for the compensation of the hysteretic and creeping transfer
characteristics of a piezoelectric stack transducer by interposing an inverse system in an open loop control. The
basis of the inverse control is formed by complex creep and hysteresis operators, which represent, adequately
connected, a precise model for the creep and hysteretic transfer behaviour. The complex creep and hysteresis
operators consist of the weighted superposition of elementary operators which, in terms of mathematics, can
easily be described and which reflect the qualitative properties of the transfer characteristic of the transducer.
This operator-based transducer model allows the prediction of the transfer behaviour within the inverse control in
order to calculate the compensation signal. As a result the maximum linearity error caused by hysteresis and
creep effects will be lowered by one order of magnitude.

Introduction

Piezoelectric solid-state transducers are capable of
immediately transforming electric into mechanical
energy or vice versa and are therefore used for
industrial purposes as high dynamic actuators and as
fast sensors. Especially when used as an actuator its
electromechanical transfer behaviour is characterised
by creep and hysteretic effects because the
transducer is driving with high voltage amplitudes
x(t) to generate the longest possible displacements
y(t), see Fig. 1.

This leads to ambiguities in the transfer behaviour of
piezoelectric energy transducers and thus to a

considerable reduction of the repeatability attainable
in an open loop control. Today in practice this
disadvantage can be avoided by adjusting the
position of the transducer within a closed loop
control. This model, however, requires an additional
displacement sensor to determine the output
quantity, a controller to generate the controller
output and a calibration of the displacement sensor
as well as a complicated controlling adjustment. The
present paper will describe an alternative solution
based upon the compensation for non-ideal transfer
characteristics by interposing an inverse system in an
open loop control, see Fig. 2.
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Fig 1: Electromechanical transfer characteristic of a piezoelectric solid-state transducer as an actuator

a) Electrical excitation x(t), normalized on the maximum amplitude b)  Mechanical reaction y(t), normalized on the maximum 

amplitude c) Mechanical reaction y over the electrical excitation x
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For this an operator Γa[] will be developed, which
describes the hysteretic and creeping large signal
transfer characteristic of the transducer.

Γa
-1[] Γa[]

 ys(t)  y(t) x(t)

Fig.2: Signal flow chart of the hysteresis and creep free
control

Based on this operator a numerical procedure will be
given, which realizes the inverse operator

x t y t( ) [ ( )] a
-1

s= Γ . (1)

Theoretical fundamentals

In the mathematical literature the notation of the
hysteretic nonlinearity will be equated with the
notation "rate independent memory effect" [7]. This
means that the output signal of a system with
hysteresis depends not only on the present value of
the input signal but also on the order of their
amplitudes, especially their extremum values, but not
on their rate in the past. The rate-independent
branching transfer characteristic shown in Fig. 1c is
a typical sign of a system with hysteretic
nonlinearities. Because of its phenomenological
character the concept of hysteresis operators
developed by Krasnosel'skii and Pokrovskii in the
1970's allows a very general and precise modelling
of hysteretic system behaviour [3]. The basic idea
consists of the modelling of the real hysteretic
transfer characteristic by the weighted superposition
of many elementary hysteresis operators, which
differ dependent on the type of the elementary
operator in one or more parameters.

One type of such an elementary hysteresis operator is
the so called linear play operator

η ηr r r( ) = [ ( ), ( ) ( )]t p x t t x t0 0, . (2)

The operator is characterized by its treshhold
parameter r. The initial value of the operator state,
namely the pair (ηr(t0),x(t0)), determines in a clear
manner the value of the operator output ηr(t) in
dependence of the future values of the input signal
x(t). A procedure for the efficient numerical
calculation of the operator output ηr(t) follows from
simple geometrical considerations based on the
transfer characteristic shown in Fig.3 [1]. For the
precise modelling of real hysteresis phenomena more
linear play operators with different treshold values ri

can be superimposed. This parallel connection of
elementary hysteresis operators leads to the complex
hysteresis operator

y t H x t q p x t t x th i r r
i 1

n

( ) [ ( )] [ ( ) ( ), ( )]
i i

= = ⋅
=
∑ ,η 0 0 . (3)

In practice due to the continuity of the linear play
operator complex hysteresis loops can sufficiently
precise modeled with the help of a small amount of
elementary operators [1].
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Fig. 3: Rate-independent transfer characteristic of the linear 
play operator

Therefore the hysteresis operator (3) is a suitable
tool for the real-time calculation of the complex
hysteresis transfer characteristic.

The notation of creep originally comes from the field
of solid-mechanics and describes the time-variant
deformation behaviour of a body due to a sudden
mechanical load [2,5]. It is a strongly damped, rate-
dependent phenomenon, which can be found in a
similar manner in the field of ferromagnetism and
ferroelectricity. Like hysteresis phenomena the
electrically induced creep effects, clearly seen in the
real system reaction in Fig. 1b, have a considerable
influence on the large-signal transfer characteristic of
a piezoelectric transducer. If these creep phenomena
are linear, they can be described, analogously to the
hysteresis modelling process, by a complex linear
creep operator

y t L x t c l x t z tc j
j 1

m

( ) [ ( )] [ ( ) ( )]
j j

= = ⋅
=
∑ λ λ, 0 , (4)

which is made up by a weighted superposition of
many elementary linear creep operators with
different creep eigenvalues λ. In this case the
elementary linear creep operator represent the
solution of a linear first order differential equation
with an initial value zλ(t0). Fig. 4 shows the step
response of the elementary linear creep operator,
which has the same qualitative properties like the
step response of the creep phenomena in the real
system. Analogously to the complex hysteresis
operator the local creep curves in Fig. 1b can
sufficiently precise modeled with the help of a small
amount of elementary operators [4]. So the creep
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operator (4) is also a suitable tool for the real-time
calculation of complex linear creep effects.
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Fig. 4: Step response of a rate dependent, elementary linear 
creep operator

The real creep transfer characteristic of a
piezoelectric transducer depends on the global past
history of the input signal in a similar manner as the
hysteretic transfer characteristic [4]. This
dependence of the global past history on the input
signal will not be considered by the complex linear
creep operator so that it is only a crude
approximation for the global creep transfer
characteristic. It can be shown, that the serial
connection of a complex hysteresis operator and a
complex linear creep operator results in a complex
nonlinear creep operator which considers the
dependence of the creep effects on the global past
history of the input signal in a suifficient manner [4].
The measured system reaction y(t) presented in Fig.
1b shows that the electromechanical transfer
characteristic of the piezoelectric transducer can be
decomposed in an immediate system reaction
represented by a complex hysteresis operator and a
delayed system reaction represented by a complex
nonlinear creep operator.

Inverse control of the piezoelectric stack actuator

For systems which can be described sufficiently
precise by a pure strictly monotone complex
hysteretis operator an inverse operator can be
derived directly from the system model [6]. But here
the system operator Γa[] contains complex hysteresis
operators and a complex linear creep operator which
are coupled together and so the direct inversion of
the system operator is not simply possible. Therefore
the inverse system model will be carried out
numerically. The assumptions for the existence of an
inverse operator Γa

-1[] and thus for the convergence
of the numerical inversion procedure are the
continuity and strict monotonicity of the operator
Γa[] [3]. Fig. 5 shows the signal flow chart of the
iterative inversion procedure. In this inverse system
two system models, an iteration model Γa

it[] and a
reference model Γa

ref[], are used. Under the

assumption that the real system, the iteration model
and the reference model have the same state an
estimated value xi for the inverse control signal x is
given by the algorithm block A.
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Fig.5: Signal flow chart of the iterative inversion procedure

With it the real system reaction y due to the
estimated inverse control signal value xi will be
predicted by the output value ymi of the iteration
model Γa

it[]. Then  the predicted system reaction ymi

will be compared with the given control signal value
ys. If the difference between ys and ymi is not
sufficiently small, the Algorithm block A calculates
an improved inverse control signal value xi+1 based
on the value xi. Since the state of the iteration model
Γa

it[] has changed by the calculation of ymi it must be
reconstructed by the reference model for the next
iteration step. If the difference between ys and ymi is
small enough the iteration procedure stops and the
real system will be driven with the inverse control
signal x = xi. In this case the state of the real system
will be the same as the state of the iteration model
Γa

it[] and thus the state of the reference model Γa
ref[]

must be updated with the state of the iteration model
Γa

it[].
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Fig. 6: Given control signal ys(t) for the inverse system
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Fig.7: Results of the inverse control process. a) Inverse control signal x versus the given control signal  ys .  b) Output signal  y versus 
the inverse control signal x. c) output signal y versus the given control signal  ys.

Results and Discussion

To verify the performance of the inverse control
procedure the inverse system was driven with an
input signal ys(t) shown in Fig. 6. Due to the
oscillating course of excitation the output-input
characteristic of a high-voltage piezo stack in Fig. 7b
shows strong branching effects, a typical transfer
pattern for a hysteretic system. Caused by the creep
effects in the transfer characteristic the hysteresis
loops run through a stabilisation process at the
beginning of the excitation. The relative deviation of
the curve shown in Fig. 7b from the linear
characteristic due to hysteresis and creep effects
amouts to 11%.

Fig. 7a shows the output-input chracteristic of the
inverse system. The curves run through an inverse
stabilisation process due to the consideration of the
creep effects by the operator-based creep model and
show an inverse branching behaviour due to the
consideration of hysteresis effects by the operator-
based hysteresis model. Fig. 7c presents the output-
input characteristic of the serial connection of the
inverse system and the real system. Due to the
compensation effect of the inverse control the
stabilisation process and the branching behaviour
caused by the creep and hysteresis phenomena are
strongly reduced. In the case of the inverse control
operation the relative deviation of the transfer
characteristic from an optimal linear characteristic
amounts only to 2%.

Summary and prospects

This paper has shown that complex creep and
hysteresis operators offer an efficient method for the

modelling and inverse control of systems with
hysteretic and creep transfer characteristic. In future
works this method will be extended to systems with
more than one input signal. With it for example the
additionally multi-valued influence of an extern
mechanical load on the displacement can be
considered and compensated.
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