
Error estimates for the discrete inversion of

hysteresis and creep operators ?

Pavel Krej�c�� a and Klaus Kuhnen b

aMatematick�y �ustav AV �CR, �Zitn�a 25, CZ-11567 Praha 1, Czech Republic,

E-Mail: krejci@math.cas.cz

bLehrstuhl f�ur Prozessautomatisierung, Universit�at des Saarlandes, Im Stadtwald,

Geb. 13, D-66123 Saarbr�ucken, Germany, E-Mail: klaus@lpa.uni-sb.de

Abstract

The accuracy of a numerical scheme for real-time inverse control of piezoelectric

actuators taking into account both hysteresis and creep e�ects is analyzed with

respect to the time step and the memory discretization parameter. It is shown that

the error is of the �rst order for Lipschitz continuous inputs.
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Introduction

The aim of this paper is to investigate the convergence rate of the numerical

scheme proposed in [5] and based on a model from [7,8] for real-time inverse

control of piezoelectric actuators which exhibit non-negligible hysteresis and

creep e�ects in the constitutive relation between the time-dependent voltage

u and deformation x . We write this relation in the form

F [u](t) = x(t) for all t 2 [0; T ]; (0.1)

where T > 0 is a given �nal time, and F is an operator in the space C[0; T ] of

real-valued continuous functions. The problem consists in inverting the above
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support of the Deutsche Forschungsgemeinschaft (DFG).
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relation, that is, for a given function x 2 C[0; T ] , we look for a function

u 2 C[0; T ] such that (0.1) holds with a prescribed accuracy.

The construction of F is based on the so-called Prandtl-Ishlinskii model in-

troduced originally in [9,3] as a model of one-dimensional elastoplasticity. It

is de�ned as a (possibly in�nite) composition of elementary elastoplastic one-

yield cells with di�erent yield limits and di�erent elasticity moduli. A math-

ematical justi�cation of the model by homogenization techniques was given

in [2]. Mathematical properties of the model have been systematically investi-

gated, see [1,10,4,6], including the Lipschitz continuity of the Prandtl-Ishlinskii

operator and its inverse under appropriate assumptions.

The Prandtl-Ishlinskii model is rate-independent and cannot account for creep

e�ects. We therefore de�ne a `creep component' of F by composing elemen-

tary viscoelastic cells according to the Prandtl-Ishlinskii scheme. The com-

bined operator is investigated in [5], in particular the existence and Lipschitz

continuity of the inverse operator F
�1 : C[0; T ] ! C[0; T ] . The main result

of the present paper (Theorem 2.1 below) consists in estimating the accuracy

of the time-discrete and memory-discrete approximation of F�1 . We derive

an error estimate of the order �+mx(h) , where h is the time step, � is the

memory discretization parameter, and mx is the continuity modulus of the

input x .

1 Hysteresis and creep operators

We �rst introduce the main building blocks of our construction called play

and creep operators.

De�nition 1.1 Let � denote the set of all functions � 2 W
1;1(0;1) with

compact support such that j�0(r)j � 1 a. e., and let �
0 2 � and �

0 2

W
1;1(0;1) be given. Then

(i) the play operator pr[�
0
; � ] : C[0; T ] ! C[0; T ] with threshold r > 0 is

de�ned as the solution operator pr[�
0
; u](t) := �r(t) which with every given

function u 2 C[0; T ] associates the solution �r of the variational inequality

written in a Stieltjes integral form

8>>>>>><
>>>>>>:

u(t)� �r(t) 2 [�r; r] 8t 2 [0; T ] ;

R
T

0 (u(t)� �r(t)� w(t)) d�r(t) � 0 8w 2 C[0; T ]; jjwjj
1
� r ;

�r(0) = maxfu(0)� r;minf�0(r); u(0) + rgg ;

(1.1)

where k � k
1

denotes the sup-norm;
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(ii) the creep operator `�[�
0
; �] : C[0; T ] ! C

1[0; T ] with parameter � > 0 is

de�ned as the solution operator `�[�
0
; u](t) := ��(t) which with every given

function u 2 C[0; T ] associates the solution �� of the di�erential equation

1

�

_��(t) + ��(t) = u(t); ��(0) = �
0(�) ; (1.2)

where the dot denotes derivative with respect to t .

The Stieltjes integral setting of �r was introduced in [6]. We actually have

the following explicit formulas for the operators `� , pr :

`�[�
0
; u](t) = e

��t
�
0(�) + �

tZ
0

e
�(��t)

u(�) d� ; (1.3)

and if the `input' function u is monotone in an interval [t0; t1] , then for t 2

[t0; t1] we have (see also [4]) that

pr[�
0
; u](t) =

8>><
>>:
maxfpr[�

0
; u](t0); u(t)� rg if u increases ;

minfpr[�
0
; u](t0); u(t) + rg if u decreases :

(1.4)

For each u 2 C[0; T ] , we de�ne the value F [u] of the hysteresis and creep

operator F : C[0; T ]! C[0; T ] by the Stieltjes integral formula

F [u](t) := a u(t) +

1Z
0

pr[�
0
; u](t) df(r) +

1Z
0

`�[�
0
; u](t) dg(�) (1.5)

under the following hypothesis.

Hypothesis 1.2

(i) a > 0 is a given constant, f; g : [0;1[! [0;1[ are bounded nondecreasing

right-continuous functions, f(0) = g(0) = 0 , f
� := f(1) < 1 , g

� :=

g(1) <1 , � :=
R
1

0 (g� � g(�)) d� <1 .

(ii) �
0 2 W

1;1(0;1) and �
0 2 � are given functions, �0(r) = 0 for r � R .

The spaces � and W
1;1(0;1) are the state spaces for the operator F . This

means that for every u 2 C[0; T ] and every �xed time t , the function r 7!

pr[�
0
; u](t) belongs to �, the function � 7! `�[�

0
; u](t) belongs to W

1;1(0;1)

and these two functions fully determine the state of the system at time t . More

precisely, we have the following result.
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Lemma 1.3 Let u 2 C[0; T ] and t 2 [0; T ] be given and let Hypothesis 1.2

(ii) hold. For r > 0 and � > 0 put

�(r) := pr[�
0
; u](t); �(�) := `�[�

0
; u](t): (1.6)

We then have

(i) j�(r + �)� �(r)j � � for every r > 0 , � > 0 ,

(ii) �(r) = 0 for r � maxfR; kuk
1
g ,

(iii) k�k
1

� max fk�0k
1

; kuk
1

g ,

(iv) j�(�+ �)� �(�)j � � maxf1; 2Tg
�
k�0k1;1 + kuk

1

�
8� > 0 , � > 0 ,

where k � k1;1 denotes the norm in W
1;1(0;1) .

Proof. Statements (i), (ii) follow from Corollary II.2.6 of [6], and (iii) follows

immediately from Eq. (1.3). To prove (iv), we �rst notice that

�(�+ �)� �(�) = e
�(�+�)t

�
0(�+ �)� e

��t
�
0(�) (1.7)

+

tZ
0

�
(�+ �)e�(�+�)� � �e

���
�
u(t� �) d� ;

where

���e�(�+�)t �0(�+ �)� e
��t

�
0(�)

��� � e
��t
�
(1� e

��t)j�0(�+ �)j (1.8)

+j�0(�+ �)� �
0(�)j

�
� �

�
Tk�

0
k
1

+ kd�
0
=d�k

1

�
:

To estimate the integral on the right-hand side of (1.7), we introduce the

number �
� := 1

�
log(1 + �

�
) . Then

t � �
�

)

tZ
0

���(�+ �)e�(�+�)� � �e
���

���d� = e
��t

� e
�(�+�)t

� �T (1.9)

t > �
�

)

tZ
0

���(�+ �)e�(�+�)� � �e
���

���d� (1.10)

= 2e���
�

(1� e
���

�

)� e
��t(1� e

��t) � 2�� � < 2�T:

Combining (1.7) { (1.10) we obtain the assertion.

The following invertibility result was proved in [5].

Theorem 1.4 Let F be given by (1.5), and let L := (2=a) � (1=(a + f
�)) .

Then for every x 2 C[0; T ] there exists a unique u 2 C[0; T ] such that
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Eq. (0.1) holds. Moreover, if x; y 2 C[0; T ] are given and F [u] = x , F [v] = y ,

then

ku� vk
1
� L e

�LT
kx� yk

1
: (1.11)

2 Discrete inversion and statement of main results

We �rst discretize the operator F with respect to the `memory' variables r; � .

Given a discretization parameter � > 0 , we replace the functions f and g in

Eq. (1.5) by step functions f�; g� of the form

f�(r) :=

8><
>:
f(ri) for r 2 [ri�1; ri[ ; i = 1; : : : ; n;

f
� for r � rn

(2.1)

g�(�) :=

8><
>:
g(�i) for � 2 [�j�1; �j[ ; j = 1; : : : ; m;

g
� for � � �m;

(2.2)

where 0 = r0 < r1 < � � � < rn , 0 = �0 < �1 < � � � < �m are given sequences

such that

f
�

� f(rn) � � ; (2.3)
1Z

�m

(g� � g(�))d� � � ; (2.4)

nX
i=1

(f(ri)� f(ri�1))(ri � ri�1) � � ; (2.5)

mX
j=1

(g(�j)� g(�j�1))(�j � �j�1) � � : (2.6)

For i = 1; : : : ; n , j = 1; : : : ; m put

bi := f(ri+1)� f(ri) ; cj := g(�j+1)� g(�j) ; (2.7)

where we denote f(rn+1) := f
�

; g(�m+1) := g
� . For every continuous function

v : [0;1[! R we then have

1Z
0

v(r) df�(r) =
nX
i=1

bi v(ri) ;

1Z
0

v(�) dg�(�) =
mX
j=1

cj v(�j) ; (2.8)
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and from Hypothesis 1.2 (i) it follows that

mX
j=1

cj�j =

1Z
0

(g� � g�(�))d� �

1Z
0

(g� � g(�))d� = �: (2.9)

Let now x 2 C[0; T ] be a given function and let h > 0 be a given time step.

We de�ne the sequences indexed by k = 0; 1; : : : ; N := [T=h]

tk := kh; xk := x(tk): (2.10)

The method proposed in [5] consists in replacing Eq. (0.1) by the discrete

system

a uk +
nX
i=1

bi �
i

k
+

mX
j=1

cj �
j

k
= xk; k = 0; : : : ; N (2.11)

with unknowns u0; : : : ; uN , where bi; cj are given by (2.7), and

�
i

0 = min
n
u0 + ri ; max f�0(ri); u0 � rig

o
; (2.12)

�
j

0 = �
0(�j); (2.13)

�
i

k
= min

n
uk + ri ; max f�i

k�1; uk � rig
o
; (2.14)

�
j

k
= e

��jh �
j

k�1 +
�
1� e

��jh
�
uk�1 (2.15)

for i = 1; : : : ; n , j = 1; : : : ; m and k = 1; : : : ; N . We solve Eq. (2.11) con-

secutively passing from k � 1 to k . At each step k , Eq. (2.11) has the form

Pk(uk) = yk , where Pk(uk) := auk+
P

n

i=1 bi�
i

k
is an increasing piecewise aÆne

function of uk , P
0

k
(v) � a for a. e. v 2 R , and yk := xk�

P
m

j=1 �j �
j

k
is known.

The sequence fukg
N

k=0 is therefore uniquely determined by Eq. (2.11).

We measure the accuracy of the method by estimating the sup-norm of the

di�erence between the exact solution u = F
�1[x] of Eq. (0.1) and the linearly

interpolated sequence fukg . The main result of this paper can be stated as

follows.

Theorem 2.1 Let Hypothesis 1.2 be satis�ed, let x 2 C[0; T ] , and �; h > 0

be given and let fukg
N

k=0 be the solution of Eq. (2.11). For t 2 [0; T ] put

u(t) := F
�1[x](t) ; (2.16)

û(t) :=

8><
>:
uk�1 +

t�tk�1

h
(uk � uk�1) ; t 2 [tk�1; tk[ ; k = 1; : : : ; N ;

uN ; t 2 [tN ; T ] :
(2.17)
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Then there exists a constant C > 0 depending only on R , k�0k1;1 , a , f � ,

g
� , � , and T (in particular, independent of x , � , and h) such that

ku� ûk
1

� C

�
(� + h)(1 + kxk

1

) +mx(h)
�
; (2.18)

where, for a function w 2 C[0; T ] , the continuity modulus mw : [0;1[!

[0;1[ of w is de�ned by the formula

mw(h) := max
n
jw(t)� w(s)j : 0 � s < t � T; t� s � hg : (2.19)

We have indeed lim infh!0+mw(h)=h > 0 for every nonconstant function

w 2 C[0; T ] . The optimal error estimate obtained from Theorem 2.1 for a

Lipschitz continuous function x is therefore of the order � + h .

For practical purposes, it would be more convenient to estimate the error of

the piecewise constant approximation �u of u de�ned as

�u(t) :=

8><
>:
uk�1 ; t 2 [tk�1; tk[ ; k = 1; : : : ; N ;

uN ; t 2 [tN ; T ] :
(2.20)

We have j�u(t)� û(t)j � mû(h) for every t 2 [0; T ] , hence Lemma 4.2 below

and (2.18) yield for ku� �uk
1

and ku� ûk
1

estimates of the same order.

The proof of Theorem 2.1 is divided into several steps. In Sect. 3 we esti-

mate the error due to the discretization of the operator F , and in Sect. 4 we

investigate the time discretization error and �nish the proof of Theorem 2.1.

In what follows, we denote by C1; C2; : : : any constants depending only on the

data R; k�0k1;1 , a; f �; g�;�, and T as in Theorem 2.1.

3 Approximation of the operator F

In this section we derive a uniform bound for the di�erence kF [u]� F�[u]k1
for an arbitrary function u 2 C[0; T ] , where F� is the operator

F�[u](t) = a u(t) +

1Z
0

pr[�
0
; u](t) df�(r) +

1Z
0

`�[�
0
; u])t) dg�(�) (3.1)

= a u(t) +
nX
i=1

bi pri[�
0
; u](t) +

mX
j=1

cj `�j [�
0
; u](t) ;
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according to the notation introduced in Sect. 2. We �rst recall an estimate for

the Stieltjes integral.

Lemma 3.1 Let  be a right-continuous bounded nondecreasing function,


� := (+1) < 1 . Let M > 0 be a given constant, and let v : [0;1[! R

be a function such that

jv(s+ �)� v(s)j �M� 8s � 0 ; 8� � 0: (3.2)

Let � > 0 be given and let 0 = s0 < s1 < � � � < sq be a sequence such that

S :=
qX

i=1

((si)� (si�1))(si � si�1) � � : (3.3)

Assume that

(i) either 
� � (sq) � � and v(s) = 0 for s � R ,

(ii) or
R
1

sq
(� � (s)) ds � � .

Let us de�ne the step function

�(s) :=

8><
>:
(si) ; s 2 [si�1; si[ ; i = 1; : : : ; q;


�

; s � sq:

(3.4)

Then we have

������
1Z
0

v(s) d(� � )(s)

������ �
8><
>:
�M(1 +R) in case (i) ;

2�M in case (ii) :
(3.5)

Proof. For every z � sq we have

zZ
0

v(s) d(� � )(s) = v(z) (� � (z))�

zZ
0

v
0(s) (�(s)� (s)) ds: (3.6)

In case (i) this yields for z � zq := maxfR; sqg that

������
zZ
0

v(s) d(� � )(s)

������ � M

zqZ
0

(�(s)� (s)) ds (3.7)

� M ((zq � sq)(
�

� (sq)) + S) � �M(1 + R):
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In case (ii) we have jv(z)j � jv(0)j+Mz , and using for z !1 the inequality

zZ
z=2

(� � (s)) ds �
z

2
(� � (z)) (3.8)

we obtain limz!1 v(z) (� � (z)) = 0. From Eq. (3.6) it follows that

������
1Z
0

v(s) d(� � )(s)

������ � M

1Z
0

(�(s)� (s)) ds (3.9)

� M

0
B@
1Z
sq

(� � (s)) ds+ S

1
CA � 2�M ;

and Lemma 3.1 is proved.

Combining Lemmas 3.1 and 1.3 we immediately obtain the following result

which concludes this section.

Proposition 3.2 Let Hypothesis 1.2 be satis�ed, and let u 2 C[0; T ] be given.

Then for every � > 0 we have

kF [u]� F�[u]k
1

� �� ; (3.10)

where F� is the operator de�ned by Eq. (3.1), and � := 1+max fR; kuk
1

g+

2maxf1; 2Tg
�
k�0k1;1 + kuk

1

�
.

4 Discretization error

The �nal goal of this section and of the whole paper is to prove Theorem 2.1.

We start with an easy consequence of Eq. (2.14).

Lemma 4.1 With the notation of (2.11) { (2.15), put

wk := a uk +
nX
i=1

bi �
i

k
(4.1)

for k = 0; : : : ; N . Then the implications

uk = uk�1 ) wk = wk�1; (4.2)
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uk 6= uk�1 ) a �
wk � wk�1

uk � uk�1
� a + f

� (4.3)

hold for all k = 1; : : : ; N .

In the next step, we prove that Eq. (2.11) preserves the continuity modulus.

Lemma 4.2 Let the hypotheses of Theorem 2.1 be ful�lled. Then there exists

a constant C1 such that

mû(h) � C1 (h (1 + jx(0)j) +mx(h)) : (4.4)

Proof. With the notation of Lemma 4.1, we can rewrite Eq. (2.11) in the form

wk +
mX
j=1

cj �
j

k
= xk: (4.5)

Putting

Æj := 1� e
��jh for j = 1; : : : ; m; (4.6)

we have by (2.15) for k = 1; : : : ; N that

�
j

k
= (1� Æj) �

j

k�1 + Æj uk�1 ; (4.7)

hence

uk � �
j

k
= uk � uk�1 + (1� Æj) (uk�1 � �

j

k�1): (4.8)

From (4.5), (4.7) it follows that

wk � wk�1 +
mX
j=1

cj Æj(uk�1 � �
j

k�1) = xk � xk�1: (4.9)

For all admissible values of indices k , j we formally denote

Uk := uk � uk�1 ; (4.10)

Xk := xk � xk�1 ; (4.11)

V
j

k
:= cjÆj (uk � �

j

k
) ; (4.12)

Wk :=
mX
j=1

V
j

k
: (4.13)
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By Lemma 4.1, for every k = 1; : : : ; N there exists �k 2 [a; a+ f
�] such that

wk � wk�1 = �k (uk � uk�1) : (4.14)

Eqs. (4.9), (4.8) then have the form

�kUk + Wk�1 = Xk ; (4.15)

V
j

k
� (1� Æj)V

j

k�1 = cjÆj Uk ; (4.16)

hence the identity

V
j

k
� (1� Æj)V

j

k�1 + cjÆj
Wk�1

�k
= cjÆj

Xk

�k
(4.17)

holds for all j = 1; : : : ; m , k = 1; : : : ; N . By induction we obtain from

Eq. (4.17) that

V
j

k
= (1� Æj)

k
V

j

0 + cjÆj

kX
p=1

Xp �Wp�1

�p
(1� Æj)

k�p
: (4.18)

To estimate the right-hand side of (4.18), we �rst notice that

0 < Æj < minf1; �jhg for j = 1; : : : ; m ; (4.19)

and from (2.9) it follows that

mX
j=1

cj Æj � � h : (4.20)

This yields������
mX
j=1

cjÆj

kX
p=1

Wp�1

�p
(1� Æj)

k�p

������ �
�h

a

k�1X
p=0

jWpj (4.21)

and similarly

������
mX
j=1

cjÆj

kX
p=1

Xp

�p
(1� Æj)

k�p

������ �
mx(h)

a

mX
j=1

cjÆj

k�1X
p=0

(1� Æj)
p (4.22)

�
mx(h)

a

mX
j=1

cj �
g
�

a
mx(h):
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To estimate the terms V
j

0 , we use (2.11) for k = 0. For i = 1; : : : ; n put

�̂
i

0 := min
n
ri ; max f�0(ri) ; �rig

o
: (4.23)

Similarly as in Lemma 4.1 we have

u0 6= 0 ) a �
au0 +

P
n

i=1 bi �
i

0 �
P

n

i=1 bi �̂
i

0

u0
� a+ f

�

: (4.24)

From (4.24) and (2.11) it follows that

ju0j �
1

a

������x0 �
mX
j=1

cj �
j

0 �

nX
i=1

bi �̂
i

0

������ �
1

a

�
jx(0)j+ g

�

k�
0
k
1
+ f

�

R

�
; (4.25)

and (4.20), (4.25) entail

������
mX
j=1

(1� Æj)
k
V

j

0

������ �
mX
j=1

jV
j

0 j �
�h

a

�
jx(0)j+ (a+ g

�)k�0k
1
+ f

�

R

�
: (4.26)

Summing Eq. (4.18) up over j and using (4.21), (4.22), and (4.26) we obtain

for every k = 0; : : : ; N that

jWkj �
�h

a

k�1X
p=0

jWpj + C2

�
h (1 + jx(0)j) + mx(h)

�
; (4.27)

with a constant C2 independent of h , k , and x and the induction yields

jWkj � C2

�
h(1 + jx(0)j) +mx(h)

��
1 +

�

a
h

�k
8k = 0; : : : ; N : (4.28)

Recall that we have N � T=h , hence

�
1 +

�

a
h

�k
� e

�T=a
; (4.29)

and using Eq. (4.15) together with inequalities (4.28), (4.29) we �nd a constant

C1 > 0 such that

juk � uk�1j � C1

�
h(1 + jx(0)j) +mx(h)

�
8k = 1; : : : ; N : (4.30)

In particular, Ineq. (4.4) holds and Lemma 4.2 is proved.
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Lemma 4.3 Let û be the function de�ned in Theorem 2.1 and let F� be the

operator given by Eq. (3.1). Put x̂ := F�[û] . Then there exists a constant

C3 > 0 such that

kx̂� xk
1

� C3

�
h(1 + jx(0)j) +mx(h)

�
: (4.31)

Proof. For every k = 0; : : : ; N we have by (1.4) that

aû(tk) +
nX
i=1

bi pri[�
0
; û](tk) = auk +

nX
i=1

bi �
i

k
: (4.32)

Put

�̂
i

k
:= `�j [�

0
; û](tk) for k = 0; : : : ; N ; j = 1; : : : ; m : (4.33)

Then �̂
j

0 = �
j

0 = �
0(�j) for all j , and for t 2 [tk�1; tk] we have

`�j [�
0
; û](t) = e

��j(t�tk�1) �̂
j

k�1 + �j

tZ
tk�1

e
�j(��t) û(�) d� ; (4.34)

hence

�̂
j

k
= e

��jh �̂
j

k�1 +
�
1� e

��jh
�
uk�1 +

 
1�

1� e
��jh

�jh

!
(uk � uk�1) (4.35)

for each j = 1; : : : ; m , k = 1; : : : ; N . From (4.7) we obtain that

j�̂
j

k
� �

j

k
j � e

��jh

����̂j
k�1 � �

j

k�1

��� + mû(h)

 
1�

1� e
��jh

�jh

!
; (4.36)

hence

j�̂
j

k
� �

j

k
j � mû(h)

 
1

1� e��jh
�

1

�jh

!
� mû(h) (4.37)

for every k = 1; : : : ; N , j = 1; : : : ; m as a consequence of the elementary

inequality 1=(1� e
�z) < 1 + 1=z for every z > 0 . From (4.37), (4.32), (2.7),

(2.11) we obtain for all k = 0; : : : ; N that

jx̂(tk)� x(tk)j =

������
mX
j=1

cj

�
�̂
j

k
� �

j

k

������� � g
�

mû(h) : (4.38)

13



Let now t 2 [tk; tk�1] be arbitrary for k = 1; : : : ; N+1, where we put tN+1 :=

T . By (1.4) we have

�����aû(t) +
nX
i=1

bi pri[�
0
; û](t)� aû(tk�1)�

nX
i=1

bi pri[�
0
; û](tk�1)

����� (4.39)

� (a+ f
�)
���û(t)� û(tk�1)

��� � (a+ f
�)mû(h)

and from (4.34) and Lemma 1.3 it follows for every j that

���`�j [�0; û](t)� `�j [�
0
; û](tk�1)

��� � �
1� e

��j(t�tk�1)
� �����̂j

k�1

���+max
k

jukj

�
(4.40)

� �jh

�
k�

0
k
1

+ 2max
k

jukj

�

By (4.25) we have

max
k

jukj � ju0j+
NX
k=1

juk � uk�1j � C4(1 + jx(0)j) + T
mû(h)

h
; (4.41)

hence���`�j [�0; û](t)� `�j [�
0
; û](tk�1)

��� � C5 �j (h(1 + jx(0)j) +mû(h)) : (4.42)

Combining (4.39) with (4.42) yields for t 2 [tk�1; tk] , k = 1; : : : ; N + 1 that

jx̂(t)� x̂(tk�1)j � C6

�
h(1 + jx(0)j) +mû(h)

�
: (4.43)

We therefore have

jx̂(t)� x(t)j � jx̂(t)� x̂(tk�1)j+ jx̂(tk�1)� x(tk�1)j+ jx(t)� x(tk�1)j (4.44)

� C7

�
h(1 + jx(0)j) +mû(h)

�
+mx(h)

and to complete the proof of Lemma 4.3, it suÆces to use Lemma 4.2.

The above estimates enable us to prove Theorem 2.1.

Proof of Theorem 2.1. For every � > 0 , the operators F� satisfy Hypothesis

1.2 with the same value of a; f �; g� and �. By Theorem 1.4 we therefore have

ku� ûk
1

� L e
L�T

kF�[u]� F�[û]k
1

(4.45)

� L e
L�T (kF�[u]� F [u]k

1

+ kx� x̂k
1

) :
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By Proposition 3.2 we have

kF�[u]� F [u]k
1

� �C8 (1 + kuk
1
) ; (4.46)

and Theorem 1.4 yields kuk
1
� L e

L�Tkx� F [0]k
1
, where

jF [0](t)j =

������C9 +

1Z
0

e
��t

�
0(�) dg(�)

������ � C10; (4.47)

hence kuk
1
� C11(1 + kxk

1
) , and the assertion follows from (4.45), (4.46),

and Lemma 4.3.

References

[1] M. Brokate and J. Sprekels, Hysteresis and phase transitions, Appl. Math. Sci.

Vol. 121, Springer-Verlag, New York (1996).

[2] J. Franc�u and P. Krej�c��, Homogenization of scalar wave equations with

hysteresis. Cont. Mech. & Ther. 11 (1999), 371{391.

[3] A. Yu. Ishlinskii, Some applications of statistical methods to describing

deformations of bodies (Russian). Izv. Akad. Nauk SSSR, Techn. Ser., No. 9

(1944), 580{590.

[4] M.A.Krasnosel'skii and A.V.Pokrovskii, Systems with hysteresis. Springer,

Berlin (1989).

[5] P. Krej�c�� and K. Kuhnen, Inverse control of systems with hysteresis and creep.

IEE Proc.{Control Theory Appl. 148 (2001), 185{192.

[6] P.Krej�c��, Hysteresis, convexity and dissipation in hyperbolic equations, Gakuto

Int. Series Math. Sci. & Appl., Vol. 8, Gakk�otosho, Tokyo (1996).

[7] K. Kuhnen and H. Janocha, Compensation of creep and hysteresis e�ects

of piezoelectric actuators with inverse systems. Proc. 6th Int. Conf. on New

Actuators, Bremen, Juni 1998, 309{312.

[8] K. Kuhnen and H. Janocha, Operator-based compensation of hysteresis, creep

and force-dependence of piezoelectric actuators. Proc. 1st IFAC-Conf. on

Mechatronic Systems, Darmstadt, September 2000, 421{426.

[9] L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen K�orper

(German). Z. Angew. Math. Mech., 8 (1928), 85{106.

[10] A. Visintin, Di�erential models of hysteresis. Springer, Berlin { Heidelberg

(1994).

15


