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Abstract

The present paper will describe an approach for the
compensation of the hysteretic transfer characteristics of a
piezoelectric stack transducer by an adaptive inverse
hysteretic control. The basis of the inverse control is formed
by a weighted superposition of elementary stop-type
hysteresis operators which, in terms of mathematics, can be
easily described and which reflect the qualitative properties of
the inverse transfer characteristic of the transducer. Starting
with a linear characteristic the weigths of an inverse hysteretic
observer are identified during operation by a stable adaption
law and transformed to the controller parameter. As a result
the maximum linearity error caused by hysteresis is lowered
about one order of magnitude.

1 Introduction

Because of its high dynamic and nearly unlimited resolution
piezoelectric actuators are best suited as drives in micro-
positioning systems. To guarantee a high precision positioning
under variable operating conditions the position is normally
controlled in a closed loop with the help of an high precision
position sensor and a PID-controller [2]. With the assumption
of a linear transfer characteristic of the transducer the
controller guarantees a fast and sufficiently damped transient
over the whole operating range, if the parameters of the
controller are well adjusted. However, the assumption of a
linear transfer characteristic of the transducer is only a crude
approximation because the transducer is driven with high-
voltage amplitudes to generate the longest possible
displacements.  Due to this high-voltage modulation, the
electromechanical transfer characteristic is considerably
characterized by rate-independent hysteresis effects shown in
Fig. 1. This leads to a reduction of the control performance in
the large signal operating range [6].
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Fig 1: Normalized electromechanical transfer characteristic
of a piezoelectric stack transducer

The present paper will describe an alternative solution for the
compensation of the hysteretic transfer characteristics of a
piezoelectric stack transducer by an adaptive inverse
hysteretic control. For that purpose the real hysteretic transfer
characteristic of the transducer is modeled by a complex
hysteresis operator H[]. Based on this hysteresis operator an
inverse hysteresis operator H-1[] is derived, which can be used
as a feed-forward compensator, see Fig.2 [7].

H-1[] H[]
 xc(t)  y(t) x(t)

Fig 2:Signal flow chart of the inverse control

In this approach the model parameter of the inverse hysteretic
control is determined on-line during the operation of the
transducer. By this means a self-learning or adaptive
hysteretic inverse control can be realized.
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2Theoretical foundations

In the mathematical literature the notation of the hysteretic
nonlinearity is equated with the notation "rate independent
memory effect" [8]. This means that the output signal of a
system with hysteresis depends not only on the present value
of the input signal but also on the order of their amplitudes,
especially their extremum values, but not on their rate in the
past. The rate-independent branching transfer characteristic
shown in Fig. 1 is typical for a system with hysteretic
nonlinearities. Because of its phenomenological character the
concept of hysteresis operators developed by Krasnosel'skii
and Pokrovskii in the 1970s allows a general and precise
modeling of hysteretic system characteristic [3]. The basic
idea consists in the modeling of the real hysteretic transfer
characteristic by the weighted superposition of many
elementary hysteresis operators, which differ according to the
type of the elementary operator in one or more characteristic
parameters. Two of the simplest types of such elementary
hysteresis operators are the so-called linear-play operator
(LPO)

 ( ) = [ ]( )ry t p x t , (1)

and the so called linear-stop operator (LSO)

 [ ]( ) = ( ) - [ ]( )r rs x t x t p x t , (2)

[1]. x(t) is the input-signal and y(t) is the output-signal of the
elementary hysteretic system. Fig. 3 and Fig. 4 show the rate-
independent transfer characteristic of the LPO and the LSO in
an y(x)-representation.
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Fig. 3: Rate-independent transfer characteristic of an LPO

Both operators are characterized by its threshold parameter r.
For the precise modeling of real hysteresis phenomena several
elementary hysteresis operators with different threshold values
ri can be superimposed. This parallel connection of
elementary hysteresis operators leads to the so-called discrete
Prandtl-Ishlinskii operator of play-type (PIOP)

y t P x t q p x t x t( ) [ ]( ) [ ]( ) [ ]( )i r
i 1

n
T

i
= = ⋅ = ⋅

=
∑ p qr (3)

and to the so-called discrete Prandtl-Ishlinskii operator of
stop-type (PIOS) [1]

y t S x t a s x t x t( ) [ ]( ) [ ]( ) [ ]( )i r
i 1

n
T

i
= = ⋅ = ⋅

=
∑ s ar . (4)

In practice, due to the continuity of the linear-play and the
linear-stop operator, complex hysteresis loops can be modeled
in a sufficiently precise way with the help of a small number
of elementary operators [4]. Therefore PIOP and PIOS are
suitable tools for the real-time calculation of the complex
hysteresis transfer characteristics.
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Fig. 4: Rate-independent transfer characteristic of an LSO

There is a specific relationship between the PIOP and the
PIOS, which is fundamental for control applications. If the
PIOP is a strictly monotone hysteresis operator, it was shown
in [1] that there exists a strictly monotone PIOS with

y t P S x t Id x t x t( ) [ [ ]]( ) [ ]( ) ( )c c c= = = . (5)

Here Id[] is the identity operator. As a consequence of
equation (5) a hysteretic inverse control H-1[] can be
developed by a PIOS, if the transducer H[] can be modeled in
a sufficiently precise way by a PIOP and vice versa.

3Adaptive inverse control

To realize an adaptive inverse hysteretic control for a
complex hystereric plant the following assumptions must be
fulfilled.

• The hysteretic plant is strictly monotone and can be
described by a PIOP or a PIOS.
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• The input amplitude range [xmin, xmax] and the output
amplitude range [ymin, ymax] of the hysteretic plant are
bounded and  known.

In the case of a voltage driven piezoelectric stack transducer a
PIOP is suited to describe its hysteretic transfer characteristic
[4] and so the inverse control can be built up by a PIOS. For
the inverse control of the hysteretic plant both the threshold
parameters ri and the weights ai of the PIOS must be known.
Because of the difficult identification of the threshold
parameters during operation the input and output amplitude
range of the plant will be mapped on the unity range [0,1] by a
linear transformation rule and the threshold parameters will be
set in the range ]0,1]. The distribution of the threshold values
in the range ]0,1] is oriented on the curvature of the major
hysteretic loop. In the case of a constant curvature, for
example, a normal distribution is suitable. Due to this
procedure the transfer characteristic of the LSO is completely
determined and the transfer characteristic of the PIOS is only
linearly dependent on the weights. Thus the control equation
is given by

x t S x t x t tn c nc c
T

nc c( ) [ ]( ) [ ]( ) ( )= = ⋅s a . (7)

Here xnc(t) is the normalized control signal, xn(t) the
normalized inverse control or input signal of the plant and ac

the vector of weights of the inverse control. From the
equations (5) and (7) follows that the connection between the
normalized output signal yn(t) and the normalized input signal
xn(t) of the plant can also be described by a PIOS

x t S y t y t tn p n p
T

n p( ) [ ]( ) [ ]( ) ( )= = ⋅s a  (8)

which models the inverse hysteretic transfer characteristic of
the plant. Thus the basic idea for the realization of an adaptive
inverse hysteretic control consists in two steps. First, an
adaptive inverse hysteretic observer for the weights ap(t) will
be realized in such a manner that all signals in the system are
bounded and the normalized observation error

e t x t y t to n o
T

n o( ) ( ) - [ ]( ) ( )= ⋅s a (9)

tends to zero asymptotically. In equation (9) ao(t) stands for
the estimates of the plant parameters ap(t). Secondly, a
transformation of the observed parameters ao(t) to the control
parameters ac(t) will be carried out in such a manner that all
signals in the system remain bounded under the influence of
the inverse control and the normalized control error

e t x t y tc nc n( ) ( ) - ( )=  (10)

tends to zero asymptotically. Assuming a bounded normalized
input and output signal within the amplitude range [0,1] an
adaption law for the weights of the inverse hysteretic observer
is given by

d t e t y t[ ]( ) ( ) [ ]( )o o o na s= ⋅ ⋅γ (11)

with the differential operator d[]. This rule guarantees that the
weights are bounded and the observation error tends to zero
asymptotically [5]. γ is an adaptive gain which suitable chosen
increases the learning performance of the adaptive inverse
hysteretic observer.

To develop a suited transformation rule for the inverse
controller parameter the following considerations can be
made. If the observer is driven with the maximum normalized
output amplitude ynmax = 1 as a reaction of the plant to a
maximum normalized input amplitude xnmax = 1 then

x t tomax
T

o
T

o[1] ( ) ( )= ⋅ = ⋅s a r a (12)

holds for a strictly monotone observer. Due to the limitation
of the normalized input and output signal in the range [0,1]
the adaption law (11) leads to

lim( [ ]( ) ( )) lim ( ) ( )
t

T
n o

t
o n

→∞ →∞
⋅ = =s ay t t x t x t (13)

and thus

lim( ( )) lim  
t

T
o

t
omax nmax

→∞ →∞
⋅ = = =r a t x x 1 (14)

holds. If the normalized control signal xnc(t) is also assumed to
be bounded within the range [0,1], the transformation rule

a
a

r ac
o

T
o

( )
( )

( )
t

t

t
=

⋅
(15)

guarantees a bounded normalized inverse control or input
signal xn(t) within the range [0,1], regardless of the specific
values of  the observer weights ao (here the singular case ao(t)
= 0 is excluded). But exactly this was the assumption for a
stable determination of the observer weights ao. From
equation (14) and (15) follows

lim ( ) ( )
t

c o
→∞

=a at t . (16)

Hence the controller tends asymptotically to the same inverse
hysteretic transfer characteristic as the observer and with
equation (5) the control error (10) tends to zero
asymptotically, too. Fig. 5 shows the continous time signal
flow chart of the adaptive inverse control. In this Figure the
blocks Tx and Ty stand for the transformation of the input and
output signal in the unity range [0,1].

The block Tx
-1 is the inverse linear transformation to Tx and Ta

stands for the nonlinear parameter transformation (15). For
the implementation of the adaptive inverse control on a digital
signal processor (DSP) the LSO was replaced by the discrete
time LSO
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Fig 5:Signal flow chart of the adaptive inverse hysteretic controller

 [ ]( ) ( ) - ( )r rs x k x k k= η (17)
with

 ( ) =

( )        ,  if ( ) > ( )

( )  ,  if  ( ) ( ) ( ) +

( ) -     ,  if ( ) + r < ( )
r

r

r r r

r

η
η

η η η
η

k

x k k x k

k k x k k r

x k r k x k

−
− − ≤ ≤ −

−








1

1 1 1

1

and the differential operator by the difference operator

 [ ]( ) =
( ) - ( )

s
d x k

x k x k

T

+1
. (18)

Ts is the sampling time of the process. The replacement of the
hysteresis and differential operators by their discrete time
counterparts leads to the following discrete time inverse
observer equation

 ( ) ( [ ]( ) [ ]( )) ( )

               +  [ ]( ) ( )

o s o n o
T

n o

s o n n

a I s s a

s

k T y k y k k

T y k x k

+ = − ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

1 γ

γ
, (19)

transformation rule

a
a

r a
c

o
T

o

( )
( )

( )
k

k

k
=

⋅
 , (20)

and the inverse controller equation

x k x k kn c
T

nc c( ) [ ]( ) ( )+ = ⋅1 s a . (21)

The difference in the inverse controller equation results from
the sample and hold operation of the DSP-based controller.

4Results

After the development of the adaptive inverse feed forward
control its performance has been tested on a real multilayer
stack transducer. For this purpose the inverse hysteretic
transfer characteristic of a voltage-driven piezoelectric stack
transducer has been modeled by a PIOS with 10 LSOs. The
threshold values of the PIOS are normal distributed in the
amplitude range ]0,1] and remain fixed during operation. Tab.
1 shows the threshold values and the initial values of the
observer and controller weights. Within the range [0,1] the
LSO with the threshold value r = 1.0 corresponds to the
identity operator Id[]. Therefore, both the controller and the
observer have a transfer characteristic of an identity operator
at start time.

Number ri aoi aci

1 0.1 0.0 0.0
2 0.2 0.0 0.0
3 0.3 0.0 0.0
4 0.4 0.0 0.0
5 0.5 0.0 0.0
6 0.6 0.0 0.0
7 0.7 0.0 0.0
8 0.8 0.0 0.0
9 0.9 0.0 0.0

10 1.0 1.0 1.0

Tab. 1: Threshold values of the PIOS and the corresponding
initial values of the observer weights

The product of the sample time Ts and the adaptive gain γ was
chosen to 0.5. Fig. 6 shows the learning process of the
controller, if it was periodically excited with a normalized
control signal shown in Fig. 7.
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Fig. 6: Measured learning process of the inverse control
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Fig 7: Normalized control signal for the performance test of
the inverse controller.

The first column in Fig. 6 shows the rate independent transfer
characteristic of the inverse controller, the second column the
serial combination of the inverse controller and the real
transducer and the third column the normalized control error
over time. The first row in Fig. 6 shows the transfer
characteristic at the start time. The second, third and fourth
row of  Fig. 6 show the transfer characteristics after the first,
second and tenth learning cyle. During the first cycle the
operation of the controller is still imperfect. But the overall
linearity error is already at this time smaller than in the
operation of the transducer without the controller, see the first
row of Fig. 6. After the second learning cycle the transfer
characteristic of the controller is nearly the inverse of the
transducer and therefore the serial combination is nearly
linear. Because of the imperfection of the inverse hysteresis
model, after the second cycle no improvement of the transfer
characteristic worth mentioning can be reached, see the fourth
row in Fig. 6. With the adaptive inverse hysteretic control the
normalized control error is reduced to a maximum value of
about 1% in comparison to the maximum value of about 8%
without the inverse control.

5Summary and prospects

Measurements on a real piezoelectric transducer have shown
that an adaptive inverse control for the compensation of the
hysteretic transfer characteristic of a piezoelectric stack
transducer can be built up by a stop-type Prandtl-Ishlinskii
operator if the transducer can be modeled by a play-type
Prandtl-Ishlinskii operator. For the adaption of the inverse
control on the real hysteretic plant an inverse hysteretic
observer was constructed by a stop-type Prandtl-Ishlinskii
operator which was coupled with a stable adaption law for the
on-line identification of the observer parameter. The

controller parameters follow from the observer parameters by
a nonlinear transformation rule which guarantees the stability
and convergence of the overall system to an identity operator.
In future works the method will be extended to plants which
consist of a rate-independent hysteretic characteristic followed
by a LTI-system which models the mechanical surroundings
of the hysteretic actuator in real applications.
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