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Abstract: The present paper will describe an approach for the simultaneous real-time
compensation of hysteresis, creep and force-dependence effects of a piezoelectric stack
actuator by a feed-forward controller. The basis of the feed-forward controller is given
by so-called complex creep and hysteresis operators, which when adequately
implemented, lead to a precise model of the creep and hysteresis characteristics. These
complex creep and hysteresis operators consist of the weighted superposition of
elementary creep and hysteresis operators which are mathematically simple and which
reflect the qualitative properties of the transfer characteristic of the transducer. This
operator-based transducer model allows the prediction of transducer displacement
resulting from the controller voltage and the reaction force of the surrounded mechanical
structure. This information is used within the feed-forward controller in order to
calculate the compensation signal. As a result the maximum linearity error caused by
hysteresis and creep effects will be lowered by one order of magnitude. Copyright 
2000 IFAC
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1. INTRODUCTION

Piezoelectric stack transducers are capable of
immediately transforming electric into mechanical

energy or vice versa and are therefore used for
industrial purposes as highly dynamic actuators and
as fast sensors. Fig. 1 illustrates the conventional
operation of a piezoelectric transducer as an actuator.

sc(t)

s(t)

q(t) f(t)

v(t)

Conventional
controller

Fig. 1. Conventional operation of a piezoelectric stack actuator
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In this case it is driven with an independent voltage
v(t) to generate a displacement s(t) against the
mechanical surrounding. Beside the voltage-
dependent displacement the transducer reacts
electrically with a voltage-dependent change of
charge q(t). Due to the voltage-dependent
displacement the surrounding mechanical structure
reacts with a force f(t) against the transducer. This
reaction force leads to an additional force-dependent
displacement and charge on the electrical contacts of
the transducer. Especially when used as an actuator
the transducer is driven with high voltage amplitudes
to generate the largest possible displacements. In this
electrical large-signal operation the
electromechanical behaviour shows strong creep and
hysteresis effects (Kuhnen and Janocha, 1998). In
the case of small force amplitudes the characteristic
of the piezoelectric stack transducer can be divided
into a creep and hysteretic voltage-dependent part
described here by the general scalar operator T and a
weighted linear force-dependent part characterised
by the so-called small-signal elasticity S.

s t T v t S f t( ) [ ]( )  ( )= + (1)

The hysteresis and creep effects in the voltage-
dependent part on the one side and the linear force-
dependence on the other side leads to ambiguities in
the characteristic of piezoelectric transducers and
thus to a considerable reduction of the repeatability
attainable in open loop control. One possible
solution of this problem is to compensate the
hysteresis, creep and force-dependence
simultaneously using the inverse feed-forward
compensator

v t T s S f tm( ) [  ]( )
-1

c= − , (2)

see Fig. 2. In this equation sc(t) is the desired
diplacement and fm(t) the force measured by a force
sensor. The force sensor can be realized for example
if we use one disk of the actuator as a sensor
element. For small-signal forces the relationship
between the electrical charge and the force is given
by the piezoelectric effect

q t d f t( )  ( )= (3)

for this disc. In this case the force sensor consists of
the sensor disc of the actuator and a conventional
charge sensor electronic (Tichy and Gautschi, 1980).
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Fig. 2. Inverse control of a piezoelectric stack actuator

2. HYSTERSIS AND CREEP MODELLING

In the mathematical literature the notation of the
hysteretic nonlinearity will be equated with the
notation "rate independent memory effect" (Brokate
and Sprekels, 1996, Visintin, 1996). This means that
the output signal of a system with hysteresis depends
not only on the present value of the input signal but
also on the order of their amplitudes, especially their
extremum values, but not on their rate in the past.
Because of its phenomenological character the
concept of hysteresis operators developed by
Krasnosel'skii and Pokrovskii in the 1970's allows a
very general and precise modelling of hysteretic
system characteristics (Krasnosel'skii and
Pokrovskii, 1989). The basic idea consists of the

modelling of the real hysteretic transfer
characteristic by the weighted superposition of many
elementary hysteresis operators, which differ in
terms of one or more parameters depending on the
type of the elementary operator. One type of such an
elementary hysteresis operator is the so-called play
operator

z t p v z tr r r( ) = [ , ]( )0 (4)

which is defined by the recursive equations

z t P v t z t rr r i( ) = ( ( ), ( ), ) (5)
and

z t P v t z rr r( ) = ( ( ), , )00 0 (6)
with
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P v z r v r v r z( , , ) = max{ ,min{ , }}− +       (7)

for piecewise monotonous input signals with a
monotonicity partition t0 ≤ t1 ≤ . . ≤ ti ≤ t ≤ ti+1 . . ≤
tN. The operator is characterized by its threshhold
parameter r. The initial value of the operator state zr0

determines in a clear manner the value of the
operator output zr(t) in dependence of the future
values of the input signal v(t). Fig. 3 shows the rate-
independent output-input trajectory of this simple
hysteresis operator.
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Fig. 3. Rate-independent transfer characteristic 
of the play operator

For the precise modelling of real hysteresis
phenomena more play operators with different
threshold values ri can be superimposed. This
parallel connection of elementary hysteresis
operators leads to the complex hysteresis operator

H v t b p v z ti r ri

n

i i
[ ]( )  [ ]( )

1
=

=∑ , 0 . (8)

In practice due to the continuity of the play operator
complex hysteresis loops can be modeled with
sufficient precision with the help of a small number
of elementary operators (Bergqvist, 1994). Therefore
the hysteresis operator (8) is a suitable tool for the
real-time calculation of the complex hysteretic
behaviour.

The notion of creep originates from the field of
solid-mechanics and describes the time-variant
deformation behaviour of a body due to a sudden
mechanical load (Kortendieck, 1993, Lemaitre and
Chaboche, 1990). It is a strongly damped, rate-
dependent phenomenon, which can be found in a
similar manner in the field of ferromagnetism and
ferroelectricity. Like hysteresis phenomena
electrically induced creep effects have a considerable
influence on the large-signal transfer characteristic of
a piezoelectric transducer (Kuhnen and Janocha,
1998). In a first order approximation these creep
phenomena are presumed linear. As a consequence
they can be described, analogously to the hysteresis
modelling process, by a complex linear creep
operator

L v t c l v z tj a aj

m

j j
[ ]( )  [ ]( )

1
=

=∑ , 0 , (9)

given by a weighted superposition of many
elementary linear creep operators with different
creep eigenvalues a. In this case the elementary
linear creep operator is the solution operator

l v z t z

a v

a a
a t t

a

a t

t

t

[ , ]( ) = e

+ e ( ) d  

( )

( )

0 0
0

0

− −

−∫ τ τ τ
    (10)

of a linear, first order differential equation with an
initial value za0. Fig. 4 shows the step response of the
elementary linear creep operator, which has the same
qualitative features as the step response of the creep
phenomena in the real system.
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Fig. 4. Step response of a rate dependent,
elementary linear creep operator

Analogous to the complex hysteresis operator, creep
curves can be modeled with sufficient precision with
the help of a small number of elementary operators
(Kuhnen and Janocha, 1998). So the creep operator
(9) is also a suitable tool for the real-time calculation
of complex linear creep effects.

In the following we derive a first-order
approximation model of the actuatoric characteristic
T by the linear superposition of a weighted reversible
part, a rate-independent irreversible part described
by the complex hysteresis operator H and a rate-
dependent part described by the complex linear
creep operator L.

T v t d v t H v t L v t[ ]( )  ( ) + [ ]( ) + [ ]( )=     (11)

In electrical small signal operation (11) can be
reduced to the reversible part

T v t d v t[ ]( )  ( )=        (12)

with the piezoelectric constant d. From this follows
that the operator-based approach is a logical
extension of small-signal modelling to the large-
signal range.
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3. TIME-DISCRETE COMPENSATOR FOR
REAL-TIME APPLICATIONS

To calculate the compensation signal by the inverse
operator T -1 in real-time a digital signal processor
(DSP) is used. Therefore a time-discrete model for
the operator T is developed. Using a rectangular
approximation for the numerical calculation of the
integral equation (10), we obtain a simple first-order
difference equation

 ( ) ( ( ), ( ), )z k L v k z k aa a= − −1 1        (13)
with

 ( ) e + (1- e ) L v z a z v
aT aTs s, , = − −

     (14)

and with the initial value za(0) = za0. In equation (14)
Ts is the sampling time.

A procedure for the numerical calculation of the
play operator and thus a time-discrete model for
digital signal processing applications follows from
equation (5) for the time-continuous counterpart.
The time-discrete play operator can be calculated
according to the difference equation

   z k P v k z k rr r( ) = ( ( ), ( -1), )     (15)
and

z P v z rr r( ) = ( (0), , )00 .     (16)
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Fig 5. Signal flow chart of the inverse controller

The time-discrete counterpart of  (1) is then given by
the solution of the system of first-order difference
equations

s k d v k k k S f kT T( ) =  ( ) ( ) + ( ) +  ( )+ ⋅ ⋅b z c zr a     (17)

z P z rr r( ) = ( ( ), ( ), )k v k k −1        (18)

   z L z aa a( ) = ( ( ), ( ), )k v k k− −1 1      (19)

with the initial values

z P z rr r( ) = ( ( ), , )0 0v k     (20)

z za a( ) =0 0          (21)

and the vectors

r aT
n

T
mr r a a= (  . . ),   = (  . . ),1 1

b cT
n

T
mb b c c= (  . . ),   = (  . . ),1 1

z zr a
T

r r
T

a az z z z
n m

= (  . . ),   = (  . . ),
1 1

P z r( , , ) = ( ( , , ) .  .  ( , , )),1v P v z r P v z rT
r r nn1

L z a( , , ) = ( ( , , ) .  .  ( , , )) .1v L v z a L v z aT
a a mm1

The problem to find the inverse control value v(k)
for a given control value sc(k) and a given
measurement value fm(k) is equivalent to the solution
of the implicit time-discrete difference equation

e v k s k d v k v k k

v k k S f k

c
T

T
m

( ( )) = ( )  ( ) ( ( ), ( -1), )

( ( ), ( ), )  ( )

= 0

− − ⋅

− ⋅ − − −

b P z r

c L z a

r

a1 1

          (22)
with the implicit initial value equation

e v s d v v

S f

c
T

T
m

( ( )) = ( )  ( ) ( ( ), , )

 ( )

= 0

0 0 0 0

0

0

0

− − ⋅

− ⋅ −

b P z r

c z

r

a .      (23)

If the coefficients d and b fulfill the contraints d > 0
and b ≥ 0, the continuity and monotonicity properties
of the play operator lead to a continuous and strictly
monotone relationship between the value e(v(k)) and
the value v(k) for every feasible state value zr(k-1).
Therefore there exists only one value v(k) and only
one feasible subsequent state value zr(k) which fulfills
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(22) and thus the zero finding problem in the k-th
time point has only one global solution which can be
calculated numerically by a bisection method. After
the numerical solution of (22) the present state values
zr(k) of the hysteresis operator and za(k) of the creep
operator can be calculated according to (18) and (19).
Fig. 5 shows the feedback principle of the inverse
controller.

4. RESULTS AND DISCUSSION

The inverse compensator was realized on a digital
signal processor (DSP) with a sampling rate of 1 kHz.
To verify the performance of the compensation
concept the inverse compensator was driven with the
desired displacement signal sc(t) shown in Fig. 6a.
Fig. 6c shows the characteristic of the conventional
linear controller as a gray line.
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Fig. 6. Hysteresis, creep and force-dependence compensation results

It is an ideal linear rate-independent characteristic
typical for conventional voltage-amplifiers. As a

consequence the characteristic of the serial
combination conventional controller-transducer,
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shown in Fig. 6d as a gray line, shows the hysteresis
and creep effects of the transducer. The characteristic
of the operator-based inverse compensator, shown in
Fig. 6c as a black line, is obviously inverse to the
characteristic of the transducer. As a consequence the
characteristic of the serial combination inverse
compensator-transducer, shown in Fig. 6d as a black
line, is almost completely free of hysteresis and creep
effects and the displacement error caused by creep
and hysteresis effects is reduced from 2.47 µm using
the conventional controller to 0.25 µm using the
inverse compensator. This is an improvement of one
order of magnitude.

The gray line in Fig. 6f shows the strongly
disturbed characteristic of the serial combination
inverse compensator-transducer. The disturbance of
the characteristic is generated by the additional
external force signal shown in Fig. 6b. In this case the
force-dependent part of the displacement is not
compensated by the inverse controller, see the gray
line in Fig. 6e. This force-dependence effect leads to
a displacement error of  11.8 µm. The black line in
Fig. 6e shows the strongly disturbed characteristic of
the inverse controller. The disturbance of the inverse
hysteretic and creep characteristic is caused by an
additional compensation of displacement generated
by the external force signal. As a consequence the
force generated disturbances in the characteristic of
the serial combination inverse compensator-
transducer is strongly reduced, see the black line in
Fig. 6f. As the main result the displacement error
caused by the external force is reduced to 1.55 µm.
This is also an improvement of one order of
magnitude.

5. SUMMARY AND PROSPECTS

This paper has shown that complex creep and
hysteresis operators offer an efficient method to
model the electromechanical characteristic of a
piezoelectric stack actuator if it is driven electrically
in the large-signal range. Based on this method a
compensator for the simultaneous compensation of
hysteresis and creep effects in real-time was
presented. Beside hysteresis and creep phenomena

which can be regarded as intrinsic disturbances the
displacement signal of the transducer is also
disturbed by the reaction force of the mechanical
surrounding of the actuator. The extension of the
inverse feed-forward controller to compensate this
force-dependence was also presented for the case of
small signal reaction forces.
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