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ABSTRACT

Undesired complex hysteretic nonlinearities are present
to varying degree in virtually all smart material based sensors
and actuators provided that they are driven with sufficient
high amplitudes. This necessitates the development of purely
phenomenological models which characterize these
nonlinearities in a way which is sufficiently accurate, robust,
amenable to control design for nonlinearity compensation
and efficient enough for use in real-time applications. To
fulfill these demanding requirements the present paper
describes a new compensator design method for invertible
complex hysteretic nonlinearities which bases on the so-
called Prandtl-Ishlinskii hysteresis operator. The parameter
identification of this model can be formulated as a quadratic
optimization problem which produces the best L2

2-norm
approximation for the measured output-input data of the real
hysteretic nonlinearity. Special linear inequality constraints
for the parameters guarantee the unique solvability of the
identification problem and the invertability of the identified
model. This leads to a robustness of the identification
procedure against unknown measurement errors, unknown
model errors and unknown model orders. The corresponding
compensator can be directly calculated and thus efficiently
implemented from the model by analytical transformation
laws. Finally the compensator design method is used to
generate an inverse feedforward controller for a
magnetostrictive actuator. In comparision to the conventional
controlled magnetostrictive actuator the nonlinearity error of
the inverse controlled magnetostrictive actuator is lowered
from about 30 % to about 3 %.
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INTRODUCTION

Complex memory-free nonlinearities or in generalization
complex hysteretic nonlinearities are present to varying
degree in virtually all smart material based sensors and
actuators provided that they are driven with sufficient high
amplitudes. Well-known complex hysteretic nonlinearities

are the magnetic induction - magnetic field relation of
ferromagnetic materials, the electrical polarization -
electrical field relation of ferroelectric materials and the
stress - strain relation of elasto-plastic materials. The most
familiar examples for complex hysteretic nonlinearities in
smart material systems are piezoelectric, magnetostrictive
and shape memory alloy based actuators and sensors [1]. In
many applications, these nonlinearities can be limited
through the choice of proper materials and operating regimes
so that linear sensor and actuator characteristics can be
assumed. In the consequence of more stringent performance
requirements a large number of systems are currently
operated in regimes in which hysteretic nonlinearities are
unavoidable. This necessitates the development of purely
phenomenological models which characterize these
nonlinearities in a way which is sufficiently accurate, robust,
amenable to control design for nonlinearity compensation
and efficient enough for use in real-time applications.
Models of hysteretic nonlinearities have evolved from two
different branches of physics: ferromagnetism and plasticity
theory. The roots of both branches go back to the end of the
19th century. But only at the beginning of the seventies of
the 20th century was a mathematical formalism for a
systematic consideration of hysteretic nonlinearities deve-
loped [2]. The core of this theory is formed by so-called
hysteresis operators which describe hysteretic transducers as
a mapping between function spaces. But it is only since the
beginning of the 90s that engineers employ this theory on a
larger scale to develop modern strategies for the linearisation
of hysteretic systems with an inverse control approach.
Whereas in the beginning mainly the well-known Preisach
operator was used for the modeling and linearization of
solid-state actuators with the inverse control approach [3,4],
recent papers also reference the so-called Prandtl-Ishlinskii
operator [5,6,7] which belongs to an important subclass of
the Preisach operator [8].
To develop a consistent phenomenological design concept
for a compensator of an invertable complex hysteretic
nonlinearity which is sufficiently flexible in its modeling
capabilities and moreover well suited for real-time
applications is not a simple task because it covers in general
the following coupled design steps: modeling the real
hysteretic nonlinearity, identification of the model
parameters to adapt the model to the real hysteretic
nonlinearity and inversion of the model to obtain the desired
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compensator. Especially the mathematical complexity of the
identification and inversion problem depends on the
phenomenological modeling method (for example Preisach
or Prandtl-Ishlinskii modeling) and influences strongly the
practical use of the design concept. Another difficulty of the
identification problem follows from the strong sensitivity of
the model parameters to unknown measurement errors of the
output-input data, unknown model errors and unknown
model orders. Due to these effects a parameter identification
can result in the best case to a poor model accuracy or in the
worst case to a locally non-invertable model and as a
consequence the whole compensator design fails. Therefore
the robustness against these effects is an inherent
requirement for a consistent phenomenological compensator
design method. To overcome these difficulties the present
paper describes a new compensator design concept for
complex hysteretic nonlinearities based on the Prandtl-
Ishlinskii modeling approach which is robust in the sense
mentioned above. The robustness of the new compensator
design method is reached by the consideration of linear
inequality constraints for the free model parameters which
guarantee a search for the best L2

2-norm approximation of
the measured output-input data only in those parameter
ranges where the identified model is invertible.

HYSTERESIS MODELING

In the mathematical literature the notation of the
hysteretic nonlinearity will be equated with the notation
"rate-independent memory effect" [8,9,10]. At the beginning
of the 20th century Madelung investigated experimentally
the branchings and loopings of ferromagnetic hysteresis
which result from the rate-independent memory property and
stated the following three rules from his observations [8], see
figure 1.
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Figure 1: Complex hysteretic nonlinearity

1. Any curve C1 emanating from a turning point A of the
output-input trajectory is uniquely determined by the
coordinates of A.

2. If any point B on the curve C1 becomes a new turning
point, then the curve C2 originating at B leads back to the
point A.

3.  If the curve C2 is continued beyond the point A, then it
coincides with the continuation of the curve C which led
to the point A before the C1-C2 - cycle was traversed.

In addition to these three Madelung's rules a fourth important
observation can be made for ferromagnetic, ferroelectric,
elasto-plastic materials and actuator and sensor
characteristics of smart materials, and it is exactly this
property of real hysteretic nonlinearities in which the
complex ones differ from the non complex ones.
4.  From a non turning point D within the hysteretic region

Ω more than one branch can be traversed.
Because of its phenomenological character the concept of
hysteresis operators allows a powerful modelling of complex
hysteretic nonlinearities without taking into account the
underlying physics [2]. The basic idea consists of the
modeling of the real complex hysteretic nonlinearities by the
weighted superposition of many so-called elementary
hysteresis operators. Elementary hysteresis operators are non
complex hysteretic nonlinearities with a simple mathematical
structure which are characterized by one or more parameters.
One of the most familiar and most important elementary
hysteretic mapping

y t H x y tr( ) = [ , ]( )0     (1)

between the input signal x and the output signal y is the so
called play or backlash operator Hr which is often used to
model mechanical play in gears with one degree of freedom.
It is normally defined by the recursive equation

y t H x t y t ri( ) = ( ( ), ( ), )     (2)

with the initial condition

y t H x t y r( ) = ( ( ), , )00 0     (3)

for the output signal at initial time t0. It dependends on the
independent initial value y0 of the output and the sliding
symmetrical dead-zone function

H x y r x r x r y( , , ) = max{ ,min{ , }}− +     (4)

for piecewise monotonous input signals with a monotonicity
partition t0 ≤ t1 ≤ . . ≤ ti ≤ t ≤ ti+1 . . ≤ tN = te [8]. The operator
is characterized by its threshold parameter r ∈ ℜ+

0. Figure 2
shows the rate-independent output-input trajectory of this
elementary hysteresis operator. Although the three
Madelung's rules hold for the play operator it can be easily
realized that the ferromagnetic, ferroelectric or elastic-plastic
behaviour of real materials and the hysteretic actuator and
sensor characteristics of real smart materials are of much
higher complexity, note also rule 4.
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Figure 2: Rate-independent characteristic of Hr

To obtain a more powerful model for complex hysteretic
nonlinearities we introduce the so-called Prandtl-Ishlinskii
hysteresis operator H by the linear weighted superposition of
many play operators with different threshold values. From
this follows

H x t x tT[ ]( ) : [ ]( )= ⋅w H zr , 0     (5)

with the vector of weights wT = (w0 w1  .. wn), the vector of
thresholds rT = (r0 r1  .. rn) with 0 = r0 < r1 < .. < rn < +∞ , the
vector of the initial states z0

T = (z00 z01 .. z0n) of the play
operators and the vector of the play operators

 [ , ]( ) [ , ]( ) .  . [ , ]( )H zr x t H x z t H x z tT
r r nn0 00 00

= ( ) .

The hysteretic characteristic of the Prandtl-Ishlinskii
hysteresis operator is completely defined by the
characteristic of the so-called initial loading curve. This
special branch will be traversed if the initial state of the
Prandtl-Ishlinskii hysteresis operator is zero and it is driven
with a monotonous increasing input signal. The initial
loading curve can be fully characterized by and therefore
equated with a threshold-dependent piecewise linear function

ϕ( ) = ( )  ;     ;    .  .  r w r r r r r i nj j
j

i

i i− ≤ < =
=

+∑
0

1 0 ,     (6)

with rn+1 = ∞ and

d

d
( ) =   ;     ;    .  .  

r
r w r r r i nj

j

i

i iϕ
=

+∑ ≤ < =
0

1 0 .     (7)

It is called the generator function of the Prandtl-Ishlinskii
hysteresis operator [11], see figure 3 for a Prandtl-Ishlinskii
hysteresis operator with a model order of n = 4.
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Figure 3: Initial loading curve and generator function ϕ (r)

HYSTERESIS COMPENSATION

Under the consideration of the linear inequalitiy
constraints

U w u 0⋅ − ≤     (8)

for the weights with the matrix
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possibly infinite small number ε > 0 the generator function is
strongly monotonous for r  ≥ 0 and therefore the inverse of
the generator function ϕ -1(r) exists uniquely for r ≥ 0.   ϕ -1(r)
is piecewise linear and strongly monotonous and can
therefore also be regarded as a generator function

′ ′ ′ ′ − ′ ′≤ ′ < ′ =
=

+∑ϕ ( ) = ( )  ;     ;    .  .  r w r r r r r i nj j
j

i

i i
0

1 0 , (9)

of a Prandtl-Ishlinskii hysteresis operator with rHn+1′ = ∞ and

d

d
( ) =   ;     ;    .  .  

′
′ ′ ′≤ ′ < ′ =

=
+∑r

r w r r r i nj
j

i

i iϕ
0

1 0 ,   (10)

namely the inverse Prandtl-Ishlinskii hysteresis operator

H y t y tT−
′= ′ ⋅ ′1

0[ ]( ) : [ ]( )w H zr ,   (11)

with transformed initial states z0′, threshold values r′ and
weights w′. In this case the weights fullfil the same linear
inequaltity constraints
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U w u 0⋅ ′ − ≤ .   (12)

The transformation law r′ = ΩΩΩΩ (r ,w) for the thresholds results
from the relation ′r ri i= ( )ϕ . From this follows

′ − =
=
∑r w r r i ni j
j

i

i j= ( )   ;     .  .  
0

0   (13)

for the threshold-discrete case, see figure 4.
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Figure 4: Generator functions ϕ (r) and ϕ′(r′)

The transformation law w′ = ΞΞΞΞ(w) for the weights results
from the relation d ( ) d d ( ) dϕ ϕ′ ′ =r r r ri i1 ( ) , see figure 4.

From this follows

′ =w
w0

0

1
 and 

′ = −
+ +

=

= =

−

∑ ∑
w

w

w w w w

i ni
i

j
j

i

j
j

i

( )( )

   ;     . . 

0
1

0
1

1 1 .   (14)

The transformation law z0′ = ΨΨΨΨ(z0,w) for the initial states
results from the relation

( ) ( ) ( ) ( )′ − ′ ′ − ′ = − −+ + + +z z r r z z r ri i i i i i i i0 1 0 1 0 1 0 1

which is the threshold-discrete counterpart to the relation
d ( ) d d ( ) dz r r z r r′ ′ =  for the threshold-continuous case

discussed in [11]. From this follows the transformation law

′ = =
= = +
∑ ∑z w z w z i ni j
j

i

i j j
j i

n

0 0 0+    ;     .  .  
0 1

0    (15)

for the initial states. The Prandtl-Ishlinskii hysteresis
operator has the following more or less obvious properties:
1. Because the Madelung's rules persist under linear

superposition, they hold also for the Prandtl-Ishlinskii
hysteresis operator. Moreover due to the n > 1 inner

hysteretic state variables different branches can be
traversed from a non turning point D which is in
agreement with rule 4.

2. The closed loops which will be traversed for input signals
oscillating between maximum and minimum values have
an odd symmetry to the center point of the corresponding
loop. This odd symmetry property is a property of the
play operator and persists also under linear superposition.

3. The inversion operation which is given by the
transformation laws does not change the structure of the
Prandtl-Ishlinskii hysteresis operator and its inequality
contraints for the weights.

Property 1 agrees at least qualitatively with experimental
observations for complex hysteretic nonlinearities. Property
3 leads to a direct formulation and thus to a very efficient
implementation of the corresponding compensator which is
profitable for real-time control applications. The odd
symmetry property 2 which is an inherent model
characteristic is the main drawback of this Prandtl-Ishlinskii
modeling approach. But in many practical cases this property
is often fulfilled. Well-known examples are piezoelectric and
magnetostrictive actuators driven in operating regimes with
moderate input amplitudes.

HYSTERESIS IDENTIFICATION

The identification procedure which is used to adapt the
model to the real hysteretic nonlinearity is divided into two
parts. In the first part the thresholds r of the Prandtl-
Ishlinskii hysteresis operator are determined by the formula

r
i

n
x t i ni

t t te

=
+

=
≤ ≤1

0
0

max {| ( )|}   ;     .  .  .   (16)

The identification of the weights w of the Prandtl-Ishlinskii
hysteresis operator which is the object of the second part can
be formulated as an L2

2-norm minimization of the so-called
output error model

E x y t x t y tT[ , ]( ) : [ , ]( ) ( )= ⋅ −w H zr 0   (17)

which is linear dependent on the weights. This leads to the
quadratic optimization problem

min { [ , ]( ) [ , ]]( ) d

( ) [ , ]]( ) d

( ) d }2

w
r r

r

w H z H z w

H z w

∈ℜ +
⋅ ⋅

− ⋅

+

∫

∫

∫

n

e

e

e

T T

t

t

T

t

t

t

t

x t x t t

y t x t t

y t t

1

0

0

0

0 0

02    (18)

with the linear inequality contraints
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U w u 0⋅ − ≤   (19)

which has one global solution and which ensures the
invertability of the identified Prandtl-Ishlinskii hysteresis
operator. This guarantees a unique best L2

2-norm
approximation of the measured hysteretic characteristic in
that space of the weights which leads to an invertible
Prandtl-Ishlinskii hysteresis operator. Therefore the
invertability of the Prandtl-Ishlinskii hysteresis operator and
its inverse is always guaranteed during the optimization and
thus the design process for the model and the corresponding
compensator is consistent and robust against unknown
measurement errors of input-output data, unknown model
errors and unknown model orders.

RESULTS

In this section the performance of the presented
compensator design method for complex hysteretic
nonlinearities will now be demonstrated by means of the
displacement-current relation of a magnetostrictive
transducer. Figure 5 shows the strongly monotonous
hysteretic displacement-current relation in the moderate-
signal operating range of the magnetostrictive actuator.
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 A-0,5 -0,3 -0,1   0  0,1   0,3  0,5

Figure 5: Measured hysteretic displacement-current relation

It is mainly characterized by strongly monotonous branches
and symmetrical hysteretic loops with a counterclockwise
orientation. Therefore the modeling, identification and
compensation of this real complex hysteretic nonlinearity can
be realized with the Prandtl-Ishlinskii approach. The model
order n = 0 leads to a linear rate-independent operator model
and thus the identification procedure determines the best
linear L2

2-norm approximation of the real hysteretic
nonlinearity. The nonlinearity error defined by

max { [ ]( ) ( )}

max { [ ]( )}
t t t

t t t

e

e

H I t s t

H I t
0

0

≤ ≤

≤ ≤

−
  (20)

amounts in this case up to 29,8 %. Figure 6 shows the
looping and branching behaviour of the Prandtl-Ishlinskii
hysteresis operator with a model order of  n = 14 as a result
of the identification procedure.
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Figure 6: Modeled hysteretic displacement-current
relation

The nonlinearity error amounts in this case to 3,0 % which is
nearly ten times smaller as for the best linear L2

2-norm
approximation. Due to unknown model errors a further
increasing of the model order doesn’t improve the
nonlinearity error in this case.
For the compensation of the real hysteretic nonlinearity a
feedforward controller is used which bases on the inverse
Prandtl-Ishlinskii hysteresis operator, see figure 7. sc(t) is the
given displacement signal value. The inverse Prandtl-
Ishlinskii hysteresis operator is obtained from the Prandtl-
Ishlinskii hysteresis operator using the transformation laws
for the thresholds  (13), the weights (14) and the initial states
(15).
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Figure 7: Inverted hysteretic displacement-current relation

It is realized by a digital signal processor with a sampling
rate of up to 10 kHz and a displacement controlled current
source. The looping and branching characteristic of the
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inverse Prandtl-Ishlinskii hysteresis operator is shown in
figure 7.
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Figure 8: Compensated hysteretic displacement - given
displacement relation

As a final result figure 8 shows the compensated
characteristic of the overall system given by the serial
combination of the inverse feedforward controller and the
magnetostrictive actuator. In this example the control error
defined by

max { [ [ ]]( ) ( )}

max { [ [ ]]( )}

c

c

t t t

t t t

e

e

H H s t s t

H H s t
0

0

1

1

≤ ≤

−

≤ ≤

−

−
  (21)

will be strongly reduced to about 3 % due to the inverse
feedforward control strategy.

CONCLUSIONS

The main contribution of this paper is to extend the
Prandtl-Ishlinskii modeling approach for complex hysteretic
nonlinearities to a robust compensator design method for
invertible complex hysteretic nonlinearities of the Prandtl-
Ishlinskii type. For this purpose the threshold-discrete
version of the Prandtl-Ishlinskii hysteresis operator was
formulated with linear inequality constraints for the model
parameters which guarantee the invertability of the model.
Based on these linear inequality constraints and an error
model which is linear dependent on the model parameters the
identification problem can be formulated as a quadratic
program which provides always the best invertable L2

2-norm
approximation of the measured output-input data. The
corresponding compensator can be directly calculated and
thus efficiently implemented from the model by analytical
transformation laws. Finally the compensator design method
is used to generate an inverse feedforward controller for a
magnetostrictive actuator. In comparision to the conventional
controlled magnetostrictive actuator the nonlinearity error of

the inverse controlled magnetostrictive actuator is lowered
from about 30 % to about 3 %. In future works the method
will be extended to hysteresis operators which are also able
to model complex hysteretic nonlinearities with asymmetrical
hysteretic loops. These type of nonlinearities occurs if
magnetostrictive or piezoelectric actuators are driven with
higher input amplitudes.
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